
-A199 484 GEOMETRIC MODELING OF FLIGHT INFORMATION FOR GRAPHICAL In2
COCKPIT DISPLAV(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB ON SCHOOL OF ENGINEERINGI EEE E A E EEEEI

IflIIIIIIlfl

EIIIIIIIIIEIEE
IIIIIIIIIIEEEE
IIIIIIIIIIIIIIfllfllf

IIIIIIIIEIIEII

111411111 1A
11111.25 111 .4 111.

MICROCOPY RESOLUTION TEST CHART
NAT VNA A FJR ALI IA [, A

Id L

0IFI

00

GEOMETRIC MODELING OF FLIGHT
INFORMATION FOR GRAPHICAL

COCKPIT DISPLAY

THESIS

Mark A. Kanko, B.S.
Captain, USAF

AFIT/GCE/ENG/87D-6 DT 1C

do~gra aontsirW 00l1f Ec-L CT
p1tsAll pZIC ropod 2.j3 will be in black andS.

DEPARTMENT OF THE AIR FORCE 1 -

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

P8 3 24 EL

AFIT/GCE/ENG/87D-6

GEOMETRIC MODELING OF FLIGHT
INFORMATION FOR GRAPHICAL

COCKPIT DISPLAY

* THESIS

Mark A. Kanko, B.S.
Captain, UJSAF

AFIT/GCE/ENG/87D-6

%%-MAR 2 8 198

pl%~All])TIC rop1oduct %
ions Vill be in blckaD

Approved for public release; distribution unlimited

AFIT/GCE/ENG/87D-6

GEOMETRIC MODELING OF FLIGHT INFORMATION

FOR GRAPHICAL COCKPIT DISPLAY

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

C

Accession For

cop* NTIS GRA&I
DTIC TAB

Unatouned 0
. Justifigati _

Mark A. Kanko, B.S.
Disatiibut ios/

Captain, USAF Availability Codes

iivia'FN-d/or

December 1987

Approved for public release; distribution unlimited

Dedication

In loving memory of my father, Elvin Kanko,

whose lessons in patience, persistence, and

attention to detail I hope to reflect in

this work.

ii

N N N

'e.S

C

Acknowledgements

I would like to thank my advisor, Major Phil Amburn,

for his enthusiasm, fresh ideas, and continuous

encouragement during this effort. His words of correction

were never once critical, but always constructive.

Next I'd like express my thanks to the people at

Armstrong Aerospace Medical Research Laboratory who provided

the Silicon Graphics IRIS 3130 computer in support of

graphics research at AFIT.

I owe my deepest thanks to my wife, Annette, for

unfailing support throughout our time at AFIT and especially

during my thesis effort. Together with our children, she

provided a sense of joy that always encouraged.

0 Finally, I am grateful to and for the source of all

knowledge:

For the Lord gives wisdom; From His
mouth come knowledge and understanding.

Proverbs 2:6

Mark A. Kanko

I

° iii

,I

Table of Contents

Page

Dedication.........................

* Acknowledgements.......................iii

List of Figures......................vii

Abstract........................viii

I. Introduction......................1

Background.....................
Problem Statement.................3
Scope........................3

e Assumptions....................5
General Approach...................6
Presentation...................7

II. Literature Review...................8

overview........................8
Flight Simulator/Cockpit Threat Displays' 8
Procedure Modeling Techniques/Issues 9
Geometric Database Concepts and Issues ... 11
Conclusion....................15

III. System Requirements.................16

General User Requirements 16
Specific Requirements...............18

User Interface...............18
Hardware..................19
Software....................19

IV. System Theory and Design................20

Overview.........................20
General Design Considerations...........21

Modeling vs. Display 21
4 .Normalization...............................22

Data Representation Efficiency 22
Model Type.................23
Coordinate System Conventions 24
Modeling Process Overview 24

Concept of the Model..............26
Implemented Abstraction Levels. 28

iv

Data Representation of the Model 29
Data Representation 1A (DR lA). 30

DR 1A Composition 31
Data Representation lB (DR 1B). 31

DR lB Composition 32
Object Generation with Procedural Models . 32

Data Representation..............36
DR 2A Composition 36
DR 2B Composition 37

Smooth Surfaces, Light, and Shading. 37
Simulating Light...............38
Gouraud Shading..............40

Summary.......................42

V. System Implementation....................43

Overview....................43
Modeling Environment..............43

Hardware, Software, and Firmware 43
Working Directory and File Conventions - 46

Data Representations Implementation 47
Model: A Profile and Object Modeling Tool . 48

Function......................48
User Interface 48
Program Operation. 49

Layout: A Tactical Situation Modeling Tool 53
Function........................54
Modeling Session Preparation. 54
Commandline Interface.............55
Graphical User Interface...........56
Menu Functions...............57

Main Menu...............57
Ops Menu...................57

Program Operation.............63
See: A Model Viewing Tool 65

Function........................65
User Interface................5
Menu Functions...............67

WLoad model...............67
(M)odify settings...........67
(D)isplay.................68
(O)uit 6a

Program Operation. 68
Summary...........................70

VI. Conclusions and Recommendations...........72
Results.................... 2
Conclusions...................73L. Recommendations.................73

Software Enhancements.............73

Further Research 74

j v

Appendix A: Additional Software Tools 76

Appencix B: Model Building Session Example 79

Bibliography 93

Vita 96

vi

List of Figures

Figure Page

1 Primary Flight & Tactical Data.............4

2 Vertical Situation Display...............4

3 Example Threat Locations...............19

4 System Structure...................25

5 Procedural Model Examples..............34

6 Flat Shaded Image..................41

7 Gouraud Shaded Image..................41

8 "Model" Main Menu..................49

C9 Profile Input Example................50

10 Surface of Revolution Example............51

11 Profile Data Format: File ./prof/example.prof . 52

S12 Polygon Data Format: File ./poly/example-poly . 52

13 Menu/Function Hierarchy...............58

14 "See" Main Menu...................66

15 Example Model Image..................72

vii

Abstract

The purpose of this investigation was to design and

implement a graphics-based environment capable of modeling

tactical situation arenas as viewed from the cockpit. The

modeled arena or region was composed of mountains, hostile

threat envelopes, and a projected flightpath through the

region. The resulting displays were to be used in the

Microprocessor-Based Application of Graphics Interactive

Communication (MAGIC) Cockpit owned by the Crew Systems

Development Branch within the U.S. Air Force Flight Dynamics

Lab at Wright-Patterson Air Force Base. This cockpit is

used to prototype new graphical display formats that might

be used in future aircraft.

The individual three-dimensional objects used to

represent threats and mountains in the model were generated

by geometric procedural models. A strongly-parameterized

0 procedural model would generate a three-dimensional surface

of revolution composed of polygons from a two-dimensional

profile input by the user. Once defined, each object could

then be instantiated into the model representing the

complete tactical situation. Positioning of objects in the

model was accomplished via a mouse input device.

I'. The implemented data representation allowed the model

to be easily modifiable. Additionally, the model could be

stored in a machine-independent form to assure portability.

viii

An overall goal of this investigation was to allow the

cockpit display researcher to create an entirely new

tactical situation display model in less than one hour.

The applications comprising the modeling environment

were written in the C programming language and were hosted

on a Silicon Graphics IRIS 3130 graphics workstation.

C

ix

4b

GEOMETRIC MODELING OF FLIGHT INFORMATION
FOR GRAPHICAL COCKPIT DISPLAY

I. Introduction

Background

As aircraft flight and weapon systems get more complex,

the pilot's job gets more difficult as well, especially when

in a hostile environment. For this reason, efficient

methods of data presentation must be developed so the pilot

can more easily comprehend, but not be overwhelmed by the

information he must process to successfully complete all

phases of a mission.

Much of the systems and mission status information

needed by the pilot to perform a mission is currently

presented in alphanumeric formats. A more efficient

presentation method is pictorial formats.

In 1980, the U.S. Air Force Flight Dynamics Laboratory

(AFWAL/FI) at Wright-Patterson AFB began investigating

methods to compress much of the data needed by the pilot

into graphical formats suitable for cockpit display. The

research was initially based on computer graphics portrayal

ideas which were first implemented in the Navy F-l aircraft

[12:3].

A major tool currently used by the Crew Systems

Development Branch (AFWAL/FIGR) to explore new display

techniques is the Microprocessor-Based Application of

1

Graphics and Interactive Communication (MAGIC) Cockpit.

This cockpit is used to prototype new graphical display

formats that might be used in future cockpit designs.

Display formats containing flight and navigation

* information, system advisory and status information, and

tactical situation information are generated and displayed

to pilots in a dynamic mission simulation. Afterwards, the

* pilots are asked to assess the effectiveness of the

individual displays.

A key factor in a tactical situation display is the way

a hostile ground threat is displayed. Research under

government contract by McDonnell Douglas Corporation [103

and Boeing Military Aircraft Company [16] has dealt with how

these threats might look. Research has not, however, dealt

with how models of these threats might be easily created for

display generation in a fast-prototyping environment like

the MAGIC Cockpit.

Prior to this design effort, the graphic primitives

needed to generate a tactical situation model containing

terrain, flight path, and threat information were programmed

into the software that generated displays in the MAGIC

Cockpit. The model could not be easily change. Further, as

the number of objects in the model increased, the amount of

time consumed to build the model and the chance of errors

being introduced both increased. A software application

that would allow a non-programmer to generate a tactical

2

situation model of varying resolution or complexity in less

than one hour was needed.

Problem Statement

The purpose of this research was to design and

* implement a computer graphics-based software application

that would allow the user to interactively create and modify

a three-dimensional tactical situation model for display in

• a dynamic simulator environment. Further, the application

had to be capable of generating models that looked more like

the 1981 McDonnell Douglas artist conceptions (Figure 1)

Cthan the 1984 Boeing results (Figure 2). Additionally, the

resulting software procedures had to facilitate creation,

modification, and storage of the model representation in a

* machine-independent form to assure portability. The overall

goal of the application was to allow a display researcher to

create an entirely new tactical situation display model in

• less than one hour.

Scope

This research effort dealt with the creation of

tactical situation display models required by the Crew

Systems Development Branch within the Flight Dynamics Lab.

As such, the software application was targeted for a Silicon

Graphics IRIS 3130 Workstation owned by that organization.

Development of this application required investigation

into three areas:

IIU, I

~Figure 1. Primary Flight & Tactical Data [10:513

-ii

S

S

Figure . PrieryFlagtituTacticalspa [1:51]

I.-.

a

" Figure 2. Vertical Situation Display [16:15]

" 4

1) Methods proposed and/or used previously to generate
threat representations in other flight simulator or
cockpit mockup environments.

2) The use of geometric procedural models to generate
three-dimensional threat representations.

3) The selection of a geometric database representa-
tion for the tactical situation model.

Assumptions

The MAGIC Cockpit is used to evaluate displays

including system advisory and status, flight and navigation,

and tactical situation displays. The focus of this thesis

research concentrated only on the last of the three. As

*such, the user interface to application was optimized for

that purpose.

The user of this system was viewed as a cockpit display

* researcher interested in interactively manipulating the

model of some tactical environment. Manipulating the model

consisted of the creation, dynamic positioning, deletion,

and viewing of graphical objects that represented terrain

(mountains), ground threats and the projected flightpath

that would be followed by the aircraft. A flightpath

displayed in this manner is sometimes referred to as a

"flightpath in the sky."

The target system that was to host this application

C used the C programming language. Hence, all software

development and implementation was done in C.

G5

General Approach

After the three subject areas covered in the Scope were

adequately researched, software development began using a

software prototyping design approach. When initial software

development began, an IRIS graphics workstation was not yet

available for prototyping. Hence initial development,

designated "Version 1.0", was accomplished on a Sun

*Microsystems 360/3 graphics workstation located at the Air

Force Institute of Technology (AFIT). Although this was not

the target system for the final implementation, it was a

good environment to test the basic capabilities that would

exist in the final system. Capabilities present in Version

1.0 included basic terrain creation, threat creation, and

threat manipulation. All calls to graphics library routines

were isolated to a single subroutine during this development

so that transfer to the target system would be easier.

After three months of development work, an IRIS

workstation was delivered to AFIT by Armstrong Aerospace

Medical Research Lab (AAMRL) in support of AFIT computer

graphics research. All C source code was then transferred

to the 3130. This constituted the beginning of Version 2.0

Development.

Software development was considered complete when the

following capabilities were demonstrated:

1) Three-dimensional surfaces of revolution
representing threats could be generated from
two-dimensional profiles; the number of sectors per
revolution could be specified by the user.

6

I"

r .- - *,

C

2) Interactive graphical manipulation of mountains,
ground threats, and flight path in a two-dimensional
horizontal situation display format.

3) Flat and smooth (Gouraud) shaded images generated
from the same database and displayed in a vertical
situation display format.

4) Semi-transparent display of threats.

Presentation

This thesis is made up of six chapters and two

appendices. Chapter II presents a survey of the literature

in each of the three areas mentioned in the Scope. Chapter

III covers the user requirements that drove the design of

the application during the development phases. System

theory and design are discussed in Chapter IV, while Chapter

V covers the system implementation. Finally, conclusions

and recommendations are considered in Chapter VI. Appendix

A describes a number of additional software tools developed

during this effort. Appendix B takes the reader through all

the steps required to construct a tactical situation model.

7

II. Literature Review

Overview

There were three separate areas of interest that had to

be researched before any design activities could begin.

These areas were: flight simulator/cockpit graphical

displays used for threat representation, procedure modeling

techniques, and geometric database concepts and issues.

Each of these areas is reviewed in the following sections.

Flight Simulator/Cockpit Threat Displays

Beginning in 1980, the Naval Air Development Center and

the Air Force's Armament and Flight Dynamics Laboratories

began to pursue a program utilizing color computer graphics

concepts for a number of cockpit displays including tactical

situation displays [12:3]. Under a 13-month government

contract beginning in May 1980, McDonnell Douglas

Corporation developed artists' conceptions of various

cockpit displays. This study intentionally neglected the

then-current technology and budget constraints associated

with the implementation of any of the displays. Further,

the contractor was instructed to rely primarily on pictorial

representation, using alphanumerics only when absolutely

necessary [12:4]. The final report [10] depicted eighteen

formats including those for primary flight displays and

tactical situation displays.

In September of 1981, Boeing Military Airplane Company

(BMAC) undertook a government contract to implement (in a

~8

I."

., %~ ~.-

simulator environment) the displays developed by the

McDonnell Douglas contract effort. Their study evaluated

pilot acceptance of the pictorial formats using three

different types of hardware displays. The final report [16]

contained photos of the displays actually used as well as

questionnaire responses provided by pilots when asked to

assess the usefulness/desirability of the pictorial

displays. The questionnaire responses pertinent to this

thesis effort involve the displays used for threat warning:

Pilots felt the displayed threat envelopes were too boxy or

harsh and therefore were not optimized depictions of how

they perceived the threats. Further, the envelopes were

opaque so no graphical information of what might exist

beyond the closest threat was available. It is possible

that another, more lethal threat envelope or the target

itself was being masked by the closer threat envelope. This

was not a desirable display implementation.

Capt. Tom Wailes developed a number of threat envelope

formats while pursuing a graphics-related AFIT thesis [15]

a. that dealt with hidden line removal methods. These

envelopes resembled search light beams and were similar to

those produced by the Boeing study.

Procedure Modeling Techniques/Issues

Both Carlson [3] and Yan [18] have reported thatI. tremendous progress has been made in hardware since

4 computer-generated imagery was first used in flight

9

9. 9

simulation more than a decade ago. Yet Carlson noted that

there is still a problem in the acquisition, description,

and generation of data of arbitrary shape and of sufficient

complexity to be used in these computer-generated

images [3:6].

In his dissertation, Carlson presented the mathematical

foundations, issues, and techniques for generating geometric

data. His goal was to facilitate intuitive creation of

objects possessing "...significant geometric and topological

complexity" [3:93]. One of the techniques covered was the

f6 procedural model earlier discussed by Martin Newell in 1975.

Newell defined a procedural model as being a model

which represents its subject as a procedure with which other

procedures can interact [11:28]. The interaction can

include passed parameters that further specify the type or

degree of the interaction. The model can be classified as

"strongly parameterized" if the form of the represented

object can vary widely depending on the parameters [11:90].

As an example, consider a strongly parameterized

procedural model that can instantiate a building. The

parameters passed to the procedure might include the x-y-z

position, number of floors, number of windows per floor, and

reflectivity of windows. Creating a building might thenII'
take the form of the following procedure call:

building(5000, 10000, 0, 10, 12, 0.3);

which instantiates a ten-story building with twelve,

10

slightly reflective windows per floor centered 5000 feet to

the east, 10000 feet to the north, and 0 feet above some

reference location. Creating a city could now consist of a

short procedure that calls the procedure "building" a number

of times with different parameters each time. The point

here is that once the procedural model is coded, the user

need not consider the actual graphical primitives (e.g.,

* lines, polygons, points, etc.) involved in creating the

object. The overall result is a flexible modeling tool that

performs a very powerful function with minimal input.

Newell concluded that procedure models facilitate the

processing of scenes of far greater complexity than has

proved practicable using data base modeling techniques

[ll:927.

While discussing data description languages, Carlson

captured this concept when he stated the following:

Three dimensional data descriptions are typically
obtained by extending, in some sense, a two dimensional
data description. The responsibility of the data
description language then is to provide capabilities
for 1) constructing these two dimensional models, and
2) for extending them to three dimensional models
[3:29-311.

This is precisely how procedural models were used in

this research project.

Geometric Database Concepts and Issues

A secondary area of concern to this thesis effort was

the transportability of any model generated. Tactical

11

....i , ' - - . ~ 7 - - - . - - - . .

C

situation models were to be generated on a single system for

* display on a number of distinct hardware systems. The data

representation for the model was to be the vehicle that

would facilitate the transfer between systems so its

selection warranted some serious thought.

Most of the work in the literature that deals with

geometric data base generation approaches it from a

*pragmatic point of view: A large number of edges and

polygon faces must be displayed to get the best display

possible yet the hardware can usually only support a

Crelatively small number of them at a reasonable update rate

(at least 30 hertz). A compromise between rate of update

and number of displayed polygons must be made. The question

then is how should a compromise on the number of displayed

edges and polygons be reached? A number of methods are

discussed in the literature including cultural feature

instantiation [5], "building block" generation [13], and

hierarchical tree data structure evaluation by display

hardware [4]. Some of the underlying concepts of all these

methods are covered in a paper by Widder and Stephens [171

that discusses the component parts of a database used to

convert between database types on different simulators.

These optimization considerations did not play a large role

in this research as the quality of a static display was more

important than the effective update rate. This will be

discussed more fully in Chapter III.

12

On a more theoretical level, Carlson outlined some data

generation issues [3:23-371 to consider when dealing with

the creation and manipulation of models. These included

data origin, data domain, data consistency, data

representation, and data definition language. The main ones

considered for this thesis effort were the latter three.

Data consistency is the quality that ensures the data

is stored in a form that can be rendered accurately [3:251.

The representation of data (i.e., the model) must be

considered for most any application. Carlson [3:25]

outlined four questions that must be answered when a

representation is being considered:

1) What primitives comprise the model?

0 2) What is the descriptive complexity of the model? A
low descriptive complexity implies that a small number
of parameters of descriptive elements are necessary to
describe the object within the specified
representation.

3) What is the functional complexity of the model? A
high functional complexity indicates that operations
can be performed on the model using the specified
representation fairly efficiently.

4) How difficult is it to obtain the data to describe
the model using the specified representation form?

Most graphics systems allow polygons (i.e., faces) to

be handled as primitives. Carlson considered surfaces made

up of polygons to have relatively moderate descriptive

complexity [3:27]. Yan expected that future CGI

(computer-generated imagery) systems would employ planar

polygons as their major database modeling primitives, with

13

C

quadric surfaces as optional primitives [18:50]. Townsend

-* [14] confirmed Yan's prediction by describing the way her

company currently uses polygon-based modeling tools for

real-time terrain simulators. These tools' capacities are

*actually specified by the number of polygons that can be

simultaneously displayed.

The data definition language used in an application is

* one abstraction level above the two previous issues.

Carlson calls the data definition language the aggregate of

provrams designed to aid the modeler from perception (of a

real object) or conception (of a conceptual object) to the

realization of a specific model [3:29]. Interestingly

enough, both real objects (mountains) and conceptual objects

* (threat envelopes and flightpath) were modeled in this

application. Carlson continued on data definition

languages:

Included in the language are all the necessary
primitives and primitive operations required to
construct a topological model, as well as those
evaluation interactiv eroutines that allow the
specification of object attributes so that an object
model can be completed. It also includes, at least
peripherally, the user interface...

The capabilities for object data generation
include those for initially describing and entering the
data and those for modifying existing data to create
new objects [3:29].

The procedural models used to generate threat envelopes

and mountains were the major components of data description

language for this application. To a lesser degree, the

14

two-dimensional profiles used to generate the surfaces of

revolution were also a part of the data description

language.

Conclusion

It has been shown that although flight simulator

hardware systems have increased in capability over the last

decade, the methods to create the geometric models to be

displayed are still lacking.

The use of procedural models to generate geometric

surfaces was a very appropriate way to closely model the

(relatively complex) artists' conceptions first proposed by

McDonnell Douglas Corporation in 1981.

Significant research in data base creation and

composition has been done. The work done by Carlson was

particularly applicable to this thesis effort. The use of

polygons to represent the tactical model was a decision

supported by the literature.

Many of the questions posed in this chapter will be

addressed in Chapter IV of this document.

15

~. N. N

III. System Requirements

General User Requirements

The overall requirement of the user was to have a

modeling tool or environment that would allow him to create

tactical situation displays that looked similar to the

artist conception formats produced by the 1982 McDonnell

Douglas study [10] (see Figure 1). This overall requirement

was satisfied by providing three main capabilities to the

user. The development of these capabilities would comprise

most of this thesis effort.

The first capability was to generate the three-

dimensional descriptions of objects used to model the threat

envelopes, mountains, and flightpath (specified by

waypoints). The specific characteristics of the software

tools needed to create the objects were identified by

considering what the final output should look like. When

comparing Figures 1 and 2, the two characteristics that make

the artist conceptions more pleasing to the eye are (1) the

smooth, contoured nature of the threat envelopes, and (2)

the semi-transparency of the envelopes. These character-

istics are a mixture of modeling and display issues that

must be separated to correctly implement the modeling

system. The distinction between the two will be further

explained in the next chapter.

The second capability was to reliably generate these

tactical situation models interactively in a relatively

16

short amount of time (defined as one hour). Also, the

resulting model was to be easily modifiable. The reason for

these requirements was due to the nature of work done by the

user.

Most research done in the MAGIC Cockpit is concerned

with the psychological implications of information

presentation to the pilot. Different methods for displaying

information are compared to determine the effectiveness of

each. Prior to this thesis effort, the major time

constraint when generating a new experiment was the time to

actually generate a new display. Typical development time

for a new display format was approximately one to four weeks

from inception to actual results in MAGIC. Essentially, the

user wanted to spend less time generating (or modifying) the

display so that the research environment of the MAGIC

Cockpit could be more effectively utilized.

The third capability was that of database compatabi-

dlity. The database representing the model must be trans-

portable between differing computer systems. Most display

formats would be developed by the user on the Silicon

Graphics 3130 IRIS workstation and then moved over to a

faster computer for real-time display. One of the potential

real-time systems was a General Electric Compuscene. Data

compatibility between systems was critical.

17

A'

Specific Requirements

* User Interface. A fundamental requirement was the

ability to easily modify any part of the displayed model.

The user should be able to easily change the level of detail

At dedicated to the representation of the terrain, the threat

objects, or the flightpath.

The user requested that a mouse input device be used to

* position the threats and flightpath in the model. The

screen format used when laying out a tactical region should

resemble that shown in Figure 3. This particular format is

typically called a horizontal situation display.

When laying out such a tactical situation, the user

wanted to interactively specify the dimensions of the

* tactical region being created in nautical miles. For

example, the user may start a design session knowing that

the region being modeled extends 320 nautical miles to the

east and 220 nautical miles to the north of some reference

point.

When creating a flightpath, the first waypoint was

Qdesignated by "I" (for "initial"). All subsequent waypoints

were sequentially numbered starting with "1".

Also concerning the flightpath: the user wanted to

interactively choose between two different conventions for

specifying a waypoint position. The position of each

waypoint was to be specified either (1) in absolute east and

north displacements from the origin (the southwest corner of

the terrain region) or (2) in terms of range and heading

18

C

AAA(Q @ A

0 A SA AAA

Figure 3. Example Threat Locations

from the previous waypoint. For the case of Waypoint I, the

range and heading were relative to the origin.

O Hardware. All software tools developed to model the

tactical situations were to run on a Silicon Graphics IRIS

3130 workstation.

(Software. The single requirement for actual software

implementation was that coding be modular with as many

interface the viewing portion of this software with a flight

dynamics computer model to simulate real-time flight.

j 19

C

IV. System Theory and Design

0 Overview

This chapter covers the theory and rationale of design

decisions made during the development of the modeling

environment that would satisfy these capabilities.

General design considerations are discussed first.

Then data representation issues are covered since the data

representations dictate the interfaces between all modeling

tools and the model itself. Generation of modeled objects

via procedural models is covered next. Then a discussion

regarding apparent smoothness of modeled objects facilitated

by light source modeling and Gouraud shading follows.

Finally, a summary will end the chapter.

0 It should be noted that data representation, modeling,

and display issues are all closely related to each other.

The order of presentation for these areas poses the same

problem as the proverbial chicken and the egg. Where does

one concept end and another begin? How should the modeling

environment represent the essence of the modeled concepts?

Further, where does the division between the data

representation (of the model) and the model itself actually

lie? Can the data file be considered "the model" or is the

model strictly the image on the screen? Can an intermediate

symbolic form be considered a completely specified model?

The answers to these types of questions will allow us to

separate data representation, modeling, and display issues.

2

The reader is urged to cover all sections of this chapter

* before questioning his comprehension of any one area.

Finally, expressions like "the system", "the

application", "the application environment", "the modeling

* system", and "the modeling environment" all mean

fundamentally the same thing. They refer to a collection of

software tools implemented on a Unix-based Silicon Graphics

* IRIS 3130 workstation that allows the user to fulfill the

requirements outlined in the previous chapter. (Unix is a

trademark of AT&T Bell Laboratories.)

General Design Considerations

Before delving into the main areas of this chapter, a

few issues must be considered and understood.

Modeling vs. Display. In a modeling environment, it is

sometimes difficult to separate the attributes that allow

the model to be defined from those that allow the model to

be displayed. If the distinction between the two is not

clearly made, a model prone to incorrect interpretation

might result.

These comments are not meant to imply that display

issues should not be considered when constructing the model.

Organization of the data representation can have significant

impact on the performance of the display system. However,

the efficiency of the data representation was not of major

concern for this application.

21

Normalization. In order to keep the data

*representation as generic as possible, both color components

and transparency values were expressed in normalized values.

The red, green, and blue color components of a polygon were

* expressed individually as floating point values ranging from

0.0 to 1.0, inclusive. A value of 1.0 for the red component

of a polygon will always mean maximum red intensity

regardless of the system being used to display the model.

This is very similar to the rationale behind the use of

normalized device coordinates in many graphic display

c systems [9:50]. The transparency of a polygon was also

expressed as a floating point value ranging from 0.0 for

opaque to 1.0 for completely clear.

All surface normals were normalized so that only unit

normals would exist in the data representation.

Together, these conventions strengthened the

distinction between display and modeling issues in the

modeling environment. No thought of how the model will be

displayed (display issue) is given when the database is

being created (modeling issue). This is only possible

because the user did not require a dynamic model that could

change in real-time.

Data Pepresentation Efficiency. Since the user

required the data representation of the model be

transportable, an ASCII file was chosen as the transportableK medium. In terms of storage requirements, this was an

22

6 i

inefficient data representation but it was necessary to

* support the transportability requirement.

Related to transportablity is the issue of usability:

What good is a data representation if, when ported to

another dissimilar system, it cannot be easily used? ToV

assure usability the data representation would have to be

as generic as possible. This also leads to a more

inefficient (more explicit) representation.

The user was consulted to ensure that these decisions

would not compromise his requirements. Although this

6modeling system would allow the user to create any one

display in a relatively short amount of time, he would still

be spending a great deal of time tweaking that display to

4P get exactly the image he wanted. So for this type rf work,

high update rate would not be important to the user. Once

the model was correct and transported to the display system,

concern for efficiency would be appropriate. Since these

efficiency considerations would be system-dependent, they

would be very hard to predict for all systems, and were

therefore beyond the scope of this thesis effort.

Nevertheless, the data representations were chosen so that

interface to most any display system would be as easy as

possible. Normalization was one method used to facilitate

system-independent usability.

Model Type. Since we are representing the modeled

objects with polygons, the model used for this application

is considered a geometric model. Further, because the

V 23

L : Hil"12 i

entities being modeled are spatially oriented relative to

each other, we will say that the the model has intrinsically

geometric data associated with it. This is not to say that

non-geometric information such as color, texture, or

* transparency cannot be included in the model. Indeed, this

additional information allows the properties of the modeled

entities to be more accurately represented.

Coordinate System Conventions. The x, y, and z axes of

the data representation coordinate system will be mapped

into east displacement, north displacement, and vertical

altitude, respectively, in the modeling environment. Data

representation coordinates will all be specified in feet.

East and north displacements within the model will be

specified in nautical miles while altitude will be specified

in feet. This will necessitate some conversion between the

data representation and the model.

Modeling Process Overview. Finally, an overall

explanation of the intended modeling process will aid the

reader's comprehension of the theoretical aspects discussed

in the remainder of this chapter.

Figure 4 depicts the relationship between the modeling

tools and the data representations. The user starts at

Abstraction Level 2 by defining two-dimensional profiles of

threat envelopes and mountains. These are stored and can

then be revolved in space to define three-dimensional

surfaces that are then stored into an object library. These

surfaces represent the objects that will be placed

24

I *-

r,- •Tactical Situation

Model

S(polygonal)

DR IB
"I Tactical Situation

--- Model

Abstraction (symbolic)
Level 1 /"Tactical Situation DR 1A

• Modeler

'! l 'Symbolic
, User " .Model

6 Inpu Library

HIGHER
ABSTRACTION Object

LOWER Library
ABSTRACTION

PObject
Data

: (polygons)I,.~D D 2BT i Prof ile

Abstraction (points)

,eve 2Profile and Object DR2A

4'

Profile
ULibrary

Inu

!* Figure 4. System Structure

25

'.

(instantiated) into the tactical model. The user now exits

the profile and object modeling tool. After this point, the

user need not work at Abstraction Level 2 unless a new

object must be created.

Next, the tactical situation modeling tool is used at

Abstraction Level 1 to place the previously-created objects

at desired positions in the tactical region being modeled.

*Optionally, a previously-created model can be loaded for

modification. When done, the user saves a modifiable

version of the model in the symbolic library. Lastly, the

user may create the ASCII file that can be used as input to

a display program on the modeling system or another system.

Concept of the Model

The concept of a model is easy to grasp. Models are

used around us every day: weather forecast models,

financial models, and population models, to name a few. We

understand that "the model" will allow simulation, testing,

and prediction of the behavior of the entities modeled for

such purposes as understanding, visualization, experi-

mentation, and learning [6:319]. But how does the model

facilitate this "understanding"? The model is a kind of

superstructure supporting levels of abstraction that promote

a better understanding of the problem.

When levels of abstraction are provided to a user, he

can ignore the lower, less important details of the modeling

task at hand. Although the model may have to deal with

26

"k

these details at some lower level, the user does not need

them. The abstraction supported by the model (hopefully)

allows the user to focus his attention on the level of

abstraction he is most concerned with. His understanding of

the basic problem will not be cluttered by unnecessary

details.

As an example, consider the design and construction of

a house. The architect wants a modeling environment that

allows him to express the house in terms of walls, windows,

and doorways, etc. The building contractor is more

concerned with the lumber, glass and hinges needed to build

the physical representation the architect's plan (model).

If the architect is forced to work at the contractor's

abstraction level, his assigned task will be much harder to

accomplish. (Note that for this example, a single model

could provide both levels of abstraction simply by

presenting the model differently to each user. It must,

however, always be clear to the user what level of

abstraction the model is at.)

*The level of abstraction provided by the system is more

completely understood when the lowest component modifiable

by the user is specified as well. In the above example, -ow

low will our house construction model allow us to go? Is a

wall the smallest manipulable unit, or does the model allow

wall studs to be moved and paneling seam placement to be

specified as well? The user must know the level of detail

provided at each level of abstraction.

27

OP.~ ~ .

Implemented Abstraction Levels. Two levels of

abstraction, depicted in Figure 4, were needed for the

tactical situation model.

The lower of the two, Abstraction Level 2, supports

creation of objects (mountains and threats) that will be

used at the higher level. Each object is specified relative

to its own coordinate system. The lowest level of component

detail available at this level of abstraction is the

endpoints of line segments that make up a profile. Each

line segment represents the edge of a polygon that will be

generated when the profile is revolved in space. The

primary output of this level is a polygon file saved in the

Object Library. This library constitutes the interface

between Abstraction Levels I and 2.

The higher level, Abstraction Level 1, facilitates the

placement of objects created at the lower level as well as

the placement of waypoints that define the flightpath of the

aircraft. Placement locations are specified relative to the

two-dimensional origin of the tactical region being modeled.

The user will specify the dimensions of this rectangular

region before any objects are placed within it. The primary

output of this level is a polygon file that can be

transferred to any other computer system via network or

tape. The user will spend most of his time at this

abstraction level since he is mainly concerned with modeling

the tactical environment.

28

ill

9-

.- Data Representation of the Model

The user specifications outlined the requirements for a

modeling system capable of building a modifiable model

representing a tactical situation scenario. The result of a

Ito modeling session was to be a data representation of the

model that could be interpreted and displayed by a number of

dissimilar computer systems. The data representation chosen

was a critical component in the success of the entire

effort.

When considering the underlying data structures for a

modeling environment, one must consider the varied

representation of data that can be used. Some

representations are more economical, others are more

explicit and possibly more redundant. When discussing

PROLOG databases, Bratko noted that the drawback of the more

economical (less explicit) representation is that some

information always has to be recomputed when it is required

[2:118]. That observation applies equally well to the data

*; representation needed for this geometric modeling system.

Since the user desired both modifiability and

*portablity of the model, two data representations of the

model were developed. These will be referred to as data

representations 1A and lB (DR 1A and DR 1B). The number "1'
4'

signifies that they are used at Abstraction Level 1 (see

Figure 4 and modeling discussion above). Note that two

other data representations "DR 2A and DR 2B) are used at

29

Abstraction Level 2. They are used for object definition

and do not represent the model itself.

Data Representation IA (DR IA). DR 1A facilitates

model modification and is, in fact, the internal

* representation used by the main modeling tool. This

particular representation depicts the model as object

identifiers or icons located at particular x-y (east-north)

* positions in the world coordinates of the model, hence it

might be considered a two-dimensional symbolic

representation of the model. As such, DR lB and the

graphical representation cannot be directly generated from

DR 1A because the description of each individual object is

not included in DR 1A. Additional information must be

retrieved from object descriptions created at Abstraction

Level 2. This relationship between abstraction levels will

be discussed further in the object generation section below.

It is interesting to note that DR 1A completely specifies

the model at Abstraction Level 1 even though it lacks

information from the lower abstraction level.

The capability to modify the model is accomplished by

storing the state of the modeling tool to a file. Then when

modifications are desired, the file is loaded into the

C modeling tool, and modifications can be made at will. This

method requires that other information needed for scaling,

display, and DR lB generation be included when this data

representation is saved to a file.

30

"= 1H4'ONdQ51)0i'0

DR lA Composition. The essential information

contained in DR 1A is the east-north positions of all

mountains, threats and waypoints. An altitude value for

each of the waypoints is also represented. Since this is a

symbolic representation of the modeled objects, some type of

pointer to the geometric data for each object must also be

included so the modeling tool can construct DR lB.

Data Representation lB (DR 1B). DR lB facilitates

portability and is (in the form of a data file) the primary

output of the modeling system.

In order to assure usability of the model representa-

tion between various hardware display systems, the format of

the output representation had to be as generic as possible.

The actual output took the form of a pure ASCII file to

ensure transportability. The file contained a very explicit

data representation comprised solely of the three-

dimensional polygons that make up all surfaces in the model.

This type of representation resulted in a data

representation that was quite redundant in some respects.

T1his redundancy was a direct result of each polygon being

explicitly specified.

Once output to the data file, each polygon is

independently defined, therefore it loses its association

with all other polygons (except that all polygons are

specified relative to the same origin). If four polygons

share a common vertex, the vertex will be specified four

times: once for each polygon.

31

This polygon independence also results in each polygon

losing its association with any particular object, so the

modeling tool can no longer modify this data representation.

This would not be a restriction to the user as the modeling

system was to only reside on a single (type of) computer

system and model modifications would only be done on that

system. The data representation transported to other

display systems would not need to be modifiable.

DR lB Composition. DR lB consists of a

homogeneous collection of polygons. The information needed

to specify each polygon follows:

1) Number of vertices

*P 2) Transparency value of polygon

3) Ordered list of vertices; each vertex specified as:

3a) x, y, z position
3b) x, y, and z components of unit normal that is

normal to the surface at this vertex
3c) red, green, and blue components

of the vertex color

This explicit data representation format possesses data

consistency for the following reasons:

1) the number of vertices are always specified for each
polygon,

2) the vertices are always ordered in a counter-
clockwise direction when viewed from the "outside"
of the surface, and

3) the vertices are always coplanar.

Object Generation with Procedural Models

The end goal of a system for generating three-
dimensional data is to remove as many constraints for

32

data description that are placed on the user as is
possible, and to replace them with efficient algorithms
within the system itself [3:40].

The use of strongly parameterized procedural models to

create the objects in Abstraction Level 2 would allow the

user to express a complex object with very little input.

The main procedural model used for this application

creates a three-dimensional surface of revolution by

sweeping a two-dimensional profile about the z axis. The

profile is specified by a ordered set of connected line

segments in the x-z plane (Figure 5a). This profile is then

revolved to form a symmetric surface of revolution about theC
z axis (Figure 5b). The revolution is not continuous but is

broken up into a number of sectors (input by the user) much

as a round pie is cut into slices. The resulting surface is

composed of polygons bounded by the sector boundaries and

the horizontal lines connected the same profile endpoint in

adjacent sectors. Note that these polygon boundaries can be

viewed as the lines that define a wire mesh of the surface.

The number of segments specified in the profile

directly controls the resolution of the surface contour,

while the number of sectors specified controls the radial

resolution around the symmetric surface. Py specifying only

the profile and sector count, the user can construct a

relatively complex object in a short amount of time. This

indicates the procedural model is strongly parameterized.

Each profile can be saved ("Profile Data" in Figure 4) and

used to generate a number of different objects, each having

33

C

4 points 8 sectors/rev
3 line segments 24 polygons

0z 4

4

3

2 1 Y

i.
X

X

(a) (b)

0 4 points I section/extrusion
3 line segments 3 polygons

z z

0 Y

-C
3 2 X-

(C) (d)

Figure 5. Procedural Model Examples. A profile (a) used to
generate a surface of revolution (b). A profile
(c) used to generate a surface of extrusion (d).

34

ILI

C

a different number of sectors in the revolution. This

allows the user to run experiments that determine the

relationship between display system performance versus the

number of polygons displayed per object.

In order to simplify object generation, the normalized,

two-dimensional contour normals at each line segment

endpoint are calculated from the profile and stored as

profile data. The three-dimensional surface normals are

then generated by revolving the contour normals with the

profile. The direction of a normalized contour normal is

along the line that bisects the outside angle between two

adjacent line segments at their common endpoint. If the

particular endpoint is the first or the last in the profile,

the unit normal direction is defined to be perpendicular to

the segment owning the endpoint. One exception to this is

when the first or last endpoint lies on the z axis. This

indicates that the object will be closed on the bottom or

top, respectively. In this case, the tangent plane is

parallel to the x-y plane which means the normal points

straight down (-z) if it's the first endpoint or straight up

(+z) if it's the last endpoint. The outside of a profile is

considered to lie to the right of the profile when "walking"

in the x-z plane from the first endpoint to the last

endpoint (see Figure 5a).

The normalized transparency value of the object that

will be generated from the profile is also included as

profile data. It is assumed that one transparency value

35

C

will be allowed for each object, i.e., variable transparency

across the surface of an object will not be allowed.S

To conclude the discussion on procedural models, note

that Figure 5 also depicts a profile (5c) and its resulting

surface of extrusion (5d). A similar procedural model will

be used to create the flightpath in the sky by moving a

profile from waypoint to waypoint.

Data Representation. (See Figure 4.) Two data

representations must be used at Abstraction Level 2 to

support object generation via procedural models. The first,

Data Representation 2A (DR 2A), is used to represent the

two-dimensional profile while the second, Data Representa-

tion 2B (DR 2B), is used to represent the objects generated.

Note that the DR 2B format is identical to that of DR lB.

The difference is that DR 2B is assumed to be specified in

object-centered coordinates while DR lB is specified in the

world coordinate system of the entire tactical region. If

the tactical situation model were to be considered an object

itself, it would, in fact, be specified in its own object-

*centered coordinate system. However, this seems to violate

the abstraction levels defined for the modeling system, so

further consideration is not warranted.

DR 2A Composition. DR 2A consists of a

transparency value followed by an ordered set of points[7 representing the endpoints of the line segments that make up

the profile. The information needed to specify each profile

follows:

36

Is'

C

1) Transparency of the object resulting from this
profile

0 2) Ordered list of segment endpoints; each endpoint

specified as:

2a) x-z position values

2b) x and z components of unit normal that is
normal to the line tangent to the profile
at this point

2c) red, green, and blue components
of the endpoint color

DR 2B Composition. DR 2B consists of a

homogeneous collection of polygons. The information needed

to specify each polygon follows:

1) Number of vertices

2) Transparency value of polygon

3) Ordered list of vertices; each vertex specified as:

3a) x, y, z position
3b) x, y, and z components of unit normal that is

normal to the surface at this vertex
3c) red, green, and blue components

of the vertex color

Smooth Surfaces, Light, and Shading

The desire to make threat envelopes "more pleasing to

the eye" really means we want them to appear to interact

with the environment more as if they were real objects. So

if there were truly some type of envelope surrounding the

high-lethality region of an anti-aircraft threat, how would

it appear when viewed in the tactical region during the day?

It would have a smooth surface and would appear brighter on

its sunlit side while its shade side would be appreciably

darker. Although smooth, the surface would probably have

37

some texture as well; in this case, a semi-transparent one.

Also, any surfaces hidden from the viewer would not be

displayed, and we would expect the object to be in

perspective depending on the viewer position.

It was assumed that both hidden surface removal and

perspective viewing would be supported on any of the display

systems used, so the geometric information provided by the

data representation itself would suffice. The transparency9
was considered a display issue (versus modeling) that would

be taken up on the display system as well. So all that

remained was the lighting and smoothness issues.

Simulating Light. When we view an object, we see the

intensity of reflected light from the surface(s) of the

object [9:277]. The reflected light comes from various

light sources around the object. The most important, and

certainly the most natural light source in the tactical

environment would be the sun. Since the distance to the sun0
is so much greater than the dimensions of the model, the sun

is considered a point source. This greatly simplifies the

calculations needed to simulate the effect of the sun in the

tactical environment.

A second source of light in the modeled environment is

the ambient light that exists because of multiple

reflections of light from nearby objects such as the ground

or mountains. This ambient component is strictly an

additive quantity as ambient light produces a uniform

illumination of the surface at any viewing position from

38

which the surface is visible [9:278]. Typical values range

between 0.1 and 0.3. Allowing the user to vary this value

will provide extra control of the modeling environment.

Calculating the reflective component at a point on the

surface due to the light source involves calculation of the

dot product between the unit normal vector of the surface at

that point, and the unit vector that points from the surface

point to the light source. This value will range from 0.0

to 1.0. The user will be allowed to modify the reflective

value by specifying the position of the light source in the

world coordinates of the tactical model.

Note that the point on the surface at which the unit

normal vector is specified could be either at the center of

each polygon or at each vertex of each polygon. The

direction of the normal for the former would simply be

perpendicular to the polygon face at that point. For the

latter case, the direction of the normal would be the0
average of the normals to the faces of all polygons that

share the vertex. The latter was chosen because it was the

more explicit case and also because it allows Gouraud

shading to be used.

The composite calculation for determining the color

intensity at a point on the surface (i.e., at the vertex cf

a polygon) is:

39

01

I =C (ambient+reflective)
rgb rgb

where C is the actual normalizedCrgb red, green, or blue color component

of the point on the surface

I is the resulting normalizedrgb rgb color intensity

Care must be taken so the value (ambient+reflective) does

not exc--A 1.0. Also note that the intensity calculation

must be done once for each of the red, green, and blue

components of a surface point [9:276-282].

Gouraud Shading. If a surface composed of polygons is

viewed with only the above lighting model, what does the

object look like? The surface looks facetted. This is a

characteristic of a constant or flat shaded model. As more

polygons are added to the object, the apparent smoothness

*g increases as intensity discontinuities become less

noticeable. Adding polygons to the object is not practical,

however, because most display systems' performance goes down

* as more polygons are added. So a facetted appearance must

be tolerated in favor of display performance unless another

method to display the model can be utilized.

Gouraud shading is an intensity interpolation scheme,

developed by Gouraud [7], that removes intensity

discontinuities between adjacent planes of a surface

representation by linearly varying the intensity over each

plane (polygon) so that intensity values match at the plane

boundaries [9:289], [11:13-17]. Figure 6 shows an object in

40

Figure 6. Flat Shaded Image

Figure 7. Gouraud Shaded image

41

- a tactical environment model that is flat shaded while

Figure 7 depicts the same data with Gouraud shading.

Some graphics systems that support Gouraud shading in

software or firmware require the color intensity value of

each vertex of a polygon be calculated by the user; others

do not. The flat shading intensity formula above can be

used to calculate these values, if necessary.

WSummary

The major design considerations of this thesis effort

-have been discussed. Many of the issues were tightly

C interrelated and required much thought. It could be argued

that data representation implementation has been outlined in

this, the theory and design chapter. Presentation at this

* point was warranted, however, as the data representation was

so fundamental to the rest of the design and the ensuing

implementation.

4

42

It-

-N

V. System Implementation

lOverview

This chapter outlines the major software tools

developed during this thesis effort to satisfy the user's

*requirements. Three main applications were developed to

satisfy these requirements. The profile and object modeling

tool was called "Model"; the tactical situation modeling

* tool was called "Layout"; and the model viewing program

supporting Gouraud shading was called "See". A number of

utility programs were also developed; they are discussed in

Pppendix A. All programs were written in C.

Mode]ing Environment

Hardware, Software, and Firmware. All applications
S

were developed for the Silicon Graphics IRIS 3130 graphics

workstation. An extensive graphics library residing on the

system provides access to any graphics routine via

subroutine calls. The 3130 comes standard with 32 hitplanes

that support a number of different display modes. The two

used for this project were double-buffer mode for program

Layout and single buffer mode with z-buffering for program

See.

Double buffering [6:F41 facilitates smooth movement of

graphics objects without any perceived flicker. This was

necessary in program Layout so objects could be dragged into

position and so control bars to specify position and

altitude could be utilized.

43

Z-buffering [6:560-561] is an image-space approach to

eliminate hidden surfaces. When a pixel is rendered on the
P

screen, its distance from the view point is stored in a

16-bit register. The next time that same pixel is about

rendered, the 16-bit register is checked first: if the new

pixel's distance from the viewer is less than the pixel that

is already there, the new pixel is drawn to the screen and

the new di nce is written to the register; otherwisee
nothing ic, done. Since a 16-bit register is required for

every pixel position (1024 x 767 for the Silicon Graphics)

on the screen, a large portion of memory (16 bitplanes) is

used when z-buffering is invoked. Additionally, all world

coordinate values can be smaller than -32767 or larger that

+32767. Thus, the world coordinate system must be

normalized to this range if any values are expected to

violate these bounds, as was the case for program See.

The IRIS provides a powerful window manager called

"mex" which allows multiple windows with pull-down menus to

be easily controlled from an application program. On the

positive side, the user interface provided by mex is

excellent. One of the sub-goals when implementing the

program Layout was to restrict most user inputs to the mouse

device. This sub-goal was met, but only because the window

manager took care of so many tasks.

On the negative side, the special subroutine calls that

must be included in an application progiam to use mex (along

with all the other graphics routine calls) make the code

44

non-portable to other systems. Further, when invoked, mex

requires two dedicated bitplanes for its own use when in

single buffer mode; four when in double-buffer mode. This

can be a limitation, depending on the number of bitplanes

needed for color. It was this restriction that preventedS

mex from being used in program See.

Another feature provided by the Silicon Graphics was

polygon backface removal [9:261-2627. This technique checks

to see if the viewer is on the "inside" or "outside" of the

plane of a polygon based on the normal to the plane. The

direction of the normal vector is calculated from the order

in which the polygon vertices are specified. If the viewer

is on the "inside" of a polygon, it will not be rendered.

This technique works the best for solid volumes modeled with

polygons because there will always be an "outside" face

toward the viewer, regardless of his position. All surfaces

of solid disappear (i.e., are not rendered) if the viewer'sS

position happens to lie within the solid being modeled.

Gouraud shading was also supported by the IRIS. The

application using the technique has to set up the color

table appropriately to be used for shading polygons. Then,

when a polygon was to be rendered, the application would

pass an index into the color table that was to be associated

with each vertex of the polygon. Shading interpolation was

then performed automatically by the system. A minor

firmware error (confirmed by vendor) was discovered when a

Gouraud shaded polygon was (hardware) clipped by the

45

C

viewport boundary. No solution was proposed by the vendor.

Unfortunately, no lighting model was supported by the

3130. The application, therefore, was responsible for

modeling any light sources needed for the application image.

A nice feature that the 3130 did offer was textured

pattern fill for polygons. This would effectively allow an

alternating pattern of background and foreground color to be

written to a polygon. The background color portions of the

polygon appear to pass the color of whatever is behind the

polygon. A simple semi-transparency viewing tool was

implemented to see what the results looked like.

Before leaving the 3130 discussion, it should be noted

that Silicon Graphics chose to implement a non-standard

version of C on the IRIS. What most C implementations call

"double", the IRIS calls "float". Further, any trigonometry

or math functions that return a "float" value must be called

with a prefix as i cos, 1_tan, and 1_sqrt. This caused a

bit of confusion when the Version 1.0 programs were ported

from the Sun Microsystems computer.

Working Directory and File Conventions. The main

working directory, called the home directory and designated

"./", contained the executables for the main modeling tools.

Two Oirectories were required to exist under this home

directory; a third was optional.

The first, "prof", contained all profile data (Profile

Library, Figure 4) created and used by program Model. All

data files that existed in this directory had to be named

46

with a ".prof" extension. Program Model would only operate

on files with this extension.

The second directory, "poly", contained all polygon

files generated by program Model (Object Library, Figure 4).

All data files that existed in this directory had to be

named with a ".poly" extension. Programs Model and Layout

would only operate on files with this extension.

The third directory, "io", contained all symbolic data

generated and used by program Layout (Symbolic Model

Library, Figure 4). All data files that existed in this

directory should have been named with a ".1o" extension.

This convention was not expected nor enforced by program

Layout, but its use was encouraged so the home directory

could be kept as clean as possible.

Other special files were required in the home

directory, but they will be discussed below with their

respective applications.

Data Representations Implementation

The implemented data representations closely followed

the design put forward in the previous chapter. Inclusion

of comment lines in DR lB and DR 2B was implemented. Any

line at the head of the file with a leading "//" was

a' considered a comment. Any number of these comment lines

could be added to any of these files as long as they were at

the head of the file. Once a line without "//" in columns I

and 2 is encountered, all input procedures expect only

p.47

- . ~I

numeric data from that point on.

Additional information was added to DR 1A to facilitate

complete reconstruction of a symbolic model representation.

Model: A Profile and Object Modeling Tool

*Function. This application was developed to construct

two-dimensional profiles as well as three-dimensional

surfaces.

0 The program allows the user to see a directory of the

existing profiles as well as a directory of the existing

objects (surfaces). A new profile can be defined or a

previously-created profile can be loaded and listed to see

its values. It cannot be modified. If a new profile is

created, the user can optionally save it to a file. Once a

new profile has been defined or an old one has been loaded,

a surface of revolution can be generated. The profile may

also be extruded in the +y direction, but this is of limited

use since the program, Layout, cannot rotate objects in the

tactical region. The user may exit the main menu at any

time.

User Interface. Model is a text-based program. It is

invoked by typing "model" [RETURN] at the system prompt.

The main (and only) menu is shown in Figure 8. Figure 9

IE' shows an example of defining a profile while Figure 10

depicts the same profile being revolved into an eight-sided

pyramid of sorts. Note that the profile is defined starting

at the max-x/min-z position toward the min-x/max-z position.

4P

v.

- MAIN MENU -

0> EXIT
1> Profile Directory
2> Load Profile
3> Store Profile
4> List Profile
5> Construct Profile
6> Revolve Profile
7> Extrude Profile
8> Surface Directory

Enter menu choice -- >

Figure 8. "Model" Main Menu

Following this convention allows us to assume any position

to the right of the profile is on the "outside" of it while

any position to the left is on the "inside".

The interface to the extrusion portion is virtually

identical to the revolution portion except that sectors of

the revolution are replaced with sections of the extrusion.

Program Operation. After a profile is input by the

user, the program checks to see if more than one point had

been entered. If not, an error message is issued and

control is returned to the main menu. If two or more points

have been defined, the program determines the "normals" to

this profile at the points defined. This is done by

bisecting the outside angle with a unit vector. By

49

Enter menu choice -- > 5

Will all points be the same color? (y/n) -- > y

Enter red green blue
* components for all points -- > 1.0 0.0 0.0

Enter transparency value for surface ------ > 1.0

Max points = 100.

* Point #1: Enter X and Z or RETURN to quit --> 2500 0

Point #2: Enter X and Z or RETURN to quit -- > 1700 500

Point #3: Enter X and Z or RETURN to quit --> 0 1000

Point #4: Enter X and Z or RETURN to quit -->

Confirm quit? (y/n) -- > y

Save profile to file? (y/n) --> y

Enter profile name (without . extention) -- > example

Enter comment up to 65 chars.
Comment --> This is an example profile

Figure 9. Profile Input Example

definition, the normals to the first and last points are at

right angles to the first and last line segments,

respectively. The exception to this is when x=0 for the

first and/or the last point. In this case, the unit normal

points straight down (-z) if the first point's x coordinate

is equal to zero, and/or straight up (+z) if the last

point's x coordinate is equal to zero. The reason being

50

Enter menu choice -- > 6

3 points in profile: 2 polygons per sector.

Sectors per revolution? ----- > 8

16 polygons will be generated.

Enter name to save under (without . extention) -- > example
'a

* Enter comment up to 65 chars.
Comment -- > Cenerated from example.prof

Processing.. .Complete

Figure 10. Surface of Revolution Example

that if either of these two points' x coordinate is equal to

zero, then that end of the surface is closed and the tangent

*• plane at that point lies parallel to the z=O plane.

The data file that resulted from the profile definition

above is shown in Figure 11. Figure 12 shows the first two

polygons of the object that resulted from revolving the

profile from above. As indicated by the figure captions,

the profile definition resulted in a file "example.prof"

being stored in directory "./prof", while the revolution

procedure resulted in a file "example.poly" being stored in

directory "./poly". Both files did not require the same

filename prefix, "example"; each could have been named

differently.

51

4,

myw

GO -G G -4G
G 0 S .

0 .Q 0

GOO G G G 0

4 . , G 4
0 -- G?),-g G -4

0 0 G w
CS) c G "x G' 0

G'~J 0 & n - M GG -

G G - - 1 4 (n - 4.
Q 0 COr-M-4 ON

ol -C CN W1

ON co G en (n
TA r- . .

m . oC

a, iv 0s2 a -Jr- % N .QN

I* S4 4.m4 V C

* 0 ~ -'oI

-4, M 44

o o w~C fu) w~ ON. m * m m G

'4.4 0%* v>9mr m O

44 N 00 0- GG 0G n-

-0 1-4i~

2 00

a44.4 i)a GIm 0 G 0 4

cc4 0 4 mGGI

G. L LrCn rc G G

V.~~~~C 'It' G G~ V~g~ .. ((~X ~
&~~ G G. 04mO nL nL

The profile "example" could be used repeatedly to

generate objects with different numbers of sectors per

revolution.

The application that uses the surfaces or objects

created by Model will now be discussed.

Layout: A Tactical Situation Modeling Tool

The need for a high-quality user interface made this

the most complex application developed during this effort.

Double-buffering was used to facilitate smooth movement of

objects. The window manager, mex, was used to implement

pull-down menus, multiple windows, and graphical input via

the mouse device. These features facilitated a very

intuitive user interface. Before proceeding, a few

definitions are in order.

For the remainder of the Layout discussion, "pointing"

to or at a graphical object refers to pressing down the left

mouse button after the cursor has been positioned over the

object. "Dragging" a graphical object refers to pointing to

the object and then moving the cursor while the left button

is being held down. "Selecting" an object means two

different things, depending on the object: "selecting" a

menu or menu entry consists of pressing down the right mouse

button, moving the mouse until the cursor is positioned over

the desired menu entry, and then releasing the button.

Conversely, "selecting" an object icon consists simply of

53

pointing to the icon which, in turn, makes it the "current

object."

Function. This application allows the user to easily

create tactical situation models. Icons representing

mountains,threats, and wavpoints are positi±,ed on a

two-dimensional terrain grid whose size is user-specified.

The tool then creates a polygonal data representation (DR

* IB) of the model by instantiating DR 2B objects (mountains

and threats) in three-space at the locations represented by

the two-dimensional icon positions. Additionally, a

pre-defined flightpath channel profile is moved from

waypoint to waypoint to "sweep out" a polygonal

representation of the flightpath in three-space. A symbolic

*representation (DR 1A) is also created to facilitate later

modification, if necessary.

Modeling Session Preparation. Before a modeling

session can begin, the user must indicate which objects from

the DR 2B Object Library will be used during the session.

This is accomplished by listing those objects in two files:

"./mountains.in" for mountain objects and "./threats.in" for

threat objects. The format for these files is:

objectname l.poly
objectname 2.poly
objectname-3.poly

objectname n.poly

where each line is the name of a file (in directory

"./poly") which contains the DR 2B data describing an

54

object. If some filename "objectname_n.poly" does not

exist, a warning message will be issued when "layout setup"

is executed.

Commandline Interface. Layout is invoked by entering

one of the following commands at the system prompt:

layout I-tl setup
layout C-t] eastdist northdist
layout F-ti filename.lo

The first command verifies the existence of the DR 2B

object files listed in files "./mountains.in" and

"./threats.in". Then, a working file needed to map DR 2B

object files to DR 1A icon positions is created. The text

strings needed to create the Object Type menu entries are

also generated and stored for later use by the graphical

portion of the program. This command need only be used when

files "./mountains.in" and/or "./threats.in" have been

modified.

The second command form allows the user to specify the

dimensions of the tactical region to be modeled. A terrain

(1 grid of the specified dimension is then displayed and the

user can begin a modeling session. When done, the user can

store the model in both DR 1A and DR 1B formats.

The final command form allows a previously-created

model, in DR 1A format, to be loaded and modified. When

done, the modified model can be saved under the original DR

1A filename or under a new one. The user may also store the

model in DR lB format.

55

In all three cases above, "-t" is an optional flag that

enables program trace mode for debugging purposes. This

option was not deleted in the final product because the user

intended to modify the code.

* Graphical User Interface. Once invoked, Layout is

controlled via the mouse. A status window is provided to

keep the user apprised of current editing modes, object

types, positions, and altitudes. All object icons can be

directly positioned on the terrain grid with the mouse-

driven cursor. Alternately, objects can be positioned via

graphical control bars or "sliders" for exact placement.

The value controlled by a slider is changed by dragging the

control knob on the slider. Waypoint altitudes can only be

specified with a slider.

Anytime a mountain, threat, or waypoint icon is

selected, the icon in the terrain grid, along with its type

and position in the status window will flash to indicate

that it is selected. An object icon is selected either by

instantiating it when in Add mode, or by pointing to it when

r, in Delete or Edit mode. When in Delete or Edit mode, the

cursor must be within one grid square distance from the

desired object icon for it to become selected.

Mex is used extensively to present the user with a

multi-tiered menu system. Figure 13 gives an overview of

the menu/function hierarchy. A rounded box represents an

intermediate menu level, while a rectangular box represents

the lowest menu reachable.

56
'S

Menu Functions. The basic operations performed at each

level of the menu structure will be described along with the

related user interface issues. Create Database and EXIT

menu selections will be discussed under "Program Operation".

Main Menu. Allows user to enter Terrain

Operations, Flightpath Operations, or Threat Operations.

Whenever one of theses three options is selected, the status

* window will become visible and the operations mode selected

will be displayed at the top of the status window. Sliders

also become visible for positioning objects icons and for

specifying waypoint altitudes.

If Create Database is selected, the polygon file (DR

i) will be generated and saved to file "database.out" in

the current directory. A message will be displayed while

this operation is being performed. Time to create database

can range from 10 to 60 seconds or more depending on how

"* many polygons were placed into the model. Unhen the database

has been created, control again returns to the main menu.

If Exit is selected, the graphics image will disappear,

* but the user will be prompted for a filename to store theIq

symbolic model under. The user should specify a filename of

the form "lo/filename.lo" so that the symbolic model goes

into the ./lo directory. If the user does not specify a

name, the symbolic information will be saved in file

"session.lo" in the current directory.

*Ops Menus. The menus used for Terrain, Threat,

and Flightpath operations will be discussed together as they

57

J f

00

~~)

IU

~0

O)o)

U)4

o a
a1)

C)

co 0

0) CL4

>1 u

0.

~~CL

CC
Cou

0)0)

00

58 -

;i..-~ , , -V1
m CY

ca0

ECL

ol-- 0

m- u

<V

U)U

I':3

59L

00 7

46

600

all perform the same basic functions using the same

interface. For the sake of this short discussion,

mountains, threats, and waypoints will collectively be

called "objects". Exceptions will be noted.

"Add objects" allows the user to place new icons that

represent instances of the object currently displayed in the

"Current object" box of the status window. To place an

* icon, move the cursor to the desired position on the green

terrain grid and push the left mouse button; an icon will

appear. While the button is held down, the icon may be

dragged around the grid. When the button is released, the

icon will no longer track the cursor. Since the object icon

is still selected (i.e., is still the current object),

* however, it can still be moved by dragging the appropriate

slider knob. The selected object icon will move to the new

position as the slider knob is moved. Release the left

button when desired position is reached. Whether dragging

the object icon or moving it with the slider knob, the

flashing position boxes in the status window are constantly

updated so the exact position is always known. Continue

adding new object icons by pressing the left mouse button.

When done, select "Yes" from the "Quit Adding?" menu.

Control will return to the specific Operations menu.

"Delete objects" allows the user to selectively delete

object icons belonging to the current operations mode by

pointing to the specific icon and selecting "Yes" when

prompted "Delete?". Any existing icons with icon numbers

61

greater than the deleted icon will be renumbered. When done

* deleting, select "Yes" from the "Quit Deleting?" menu.

"Edit objects" allows the user to move any existing

object icons. The icon may be dragged with the cursor or

moved with the sliders. When done editing, select "Yes"

from the "Quit Editing?" menu. ,

"Object Type" (Terrain and Threat Ops only) allows the

* user to change the current type of object that can be added.

To select a new object, press the right mouse button and

move the cursor to the "objects Type" menu entry. Before

releasing the button, move the cursor off the right or left

side of "objects Type" to expose a submenu of object types.

Select the desired object type; its name will appear in the

* "Current object" box of the Status window.

"Switches" allows the user to change the display mode

used in the status window as well as to change whether the

icon numbers or markers should be displayed on the terrain

grid. This menu operates like the "object Type" menu above.

To toggle either of these settings, simply press the right

mouse button and move the cursor to the "Switches" menu

entry. Before releasing the button, move the cursor off the

right or left side of "Switches" to expose the "Toggle

Display Mode" and "Toggle Markers" submenu. Now select the

setting to toggle; the change will immediately take effect.

Note that the values shown in the position boxes of the

Status window are relative to the southwest corner of the

terrain grid when the X-Y display mode is selected. When

62
I"

the Heading-Range mode is selected, heading and range are

*specified relative to the object preceding the selected

object. For the case of "Current object" equal to I or 1,

heading and range are specified relative to the southwest

corner of the terrain grid. The Heading-Range display mode

really only makes sense when in Flightpath Operations.

Discussing the program-user interface gave an accurate

* understanding of overall program operation. The actions of

the program after the user has constructed the model are

outlined next.

Program Operation. While the user is constructing a

tactical situation model, Layout maintains a symbolic

representation of the model. Conceptually, this

* representation takes the form of three separate lists, one

for each object icon type. The lists for mountains and

threats each contain east displacement, north displacement,

and object type information for each of the mountain or

threat icons placed in the model. The list for waypoints

contains east displacement, north displacement, and altitude

of each waypoint icon.

When the user selects "Create Database" from the main

menu, the model is saved in DR lB format. To accomplish

this, the following actions are taken:

1) File "database.out" is opened for output in the
current directory.

2) A single polygon the size of the modeled terrain
I' region is written to the output file.

63

II; V"41. 1..

3) For each mountain icon in the mountain list: a copy
of the DR 2B object file corresponding to the object

* type specified for the icon in the list is read and
translated by the east-north displacements also
specified in the list. The resulting data is
appended (i.e., instantiated) to the output file.

4) Step 3 is repeated for all threat icons in the
threat list.

5) The flightpath is generated by moving a flightpath
channel profile from waypoint to waypoint, starting
from the first one. The resulting surface swept out
by the profile is represented by polygons that are

* appended to the output file.

6) The output file is closed.

All dimensioned data in the DR IB output file is specified

in feet.

Finally, when the user exits the program, the model is

saved in DR 1A format either to file "session.lo" or to a

file nan'ed by the user. This file contains:

1) Mapping information that relates mountain and threat
object types to specific data files in the ./poly

o directory.

2) Data needed to construct the actual submenus under
"Mountain Type" and "Threat Type".

3) The number of mountains in the model along with
their location and type.

4) The number of threats in the model along with their
location and type.

5) The number of waypoints in the model along with
their location and altitude.

This file can be later loaded by Layout, modifications can

be made, and new DR 1A and DR lB files can be generated.

64

Implementation discussion will now turn to the display

application developed on the 3130 for viewing a user-defined

model in DR lB format.

See: A Model Viewing Tool

Function. This application was developed to view a

tactical situation model using mesh (wireframe), flat, or

Gouraud shading.

The program allows the user to specify viewing

position, center of interest, light position, type of

shading, and amount of ambient light used when viewing a

model. Theses values can be stored in file "./.defaults" in

the home directory, if desired. Z-buffering was used to

provide hidden surface removal.

The coordinate system for See maps the X coordinate

into east displacement, the Y coordinate into north

displacement, and the Z coordinate into absolute altitude.

User Interface. See is a text-based program similar to

Model. It will display any polygon file (DR 2B or DR 1B)

existing in directory "./poly". The program is invoked by

Ctyping "see" [RETURN] at the system prompt. Figure 14 shows

the main status and menu display after a model called "env"

was loaded.

The text above the center dashed line lists some

attributes of the model currently loaded. The figure

indicates the current model is made up of 242 polygons and

Co that the model extends 50,000 feet (8.3 nautical miles at

65

(S

LI) -4 40
Ii ... 1

hi m
ii ~ I

II~ x x Ii
(a it 0

AlF EfL~ E 0-O ~
Xi +++ I

II I).~41
II I Z

+ I)

Ii I 1

ii >4 hi II I Q f

-4 XX
(a ~

44 I 1 > V
-q + -41

hi> 2 1>

(D 4-J.-i U)w 1 0 n
Ii C-4 >1 ,0 *.4 +

it 0 -1 1 ' +111

-4 0- H >

0 r-4 -4 000 I
Ii -H -4 -H I .4J-4 C

4: II ~ I 66

C

6000 feet per nautical mile) to the east and north. The

highest point in the model is at an altitude of 19,100 feet.

A comment entered by the user when the model was created is

also shown. Note that the origin is located at the

southwest corner of the model, as it was in Layout.

The data below the center dashed line show the values

of the user-modifiable display settings. Currently, the

viewer position is located three nautical miles to the east

of the origin at an altitude of 5000 feet. The viewer is

"looking" at a point 40,000 feet to the north, 1000 feet

(18,000 - 17,000) to the west, and 3000 feet (5000 - 2000)

below his current position. The light source is located

100,000 feet to the east and 100,000 to the south of the

origin at an altitude of 50,000 feet. Smooth (Gouraud)

shading is being used and the ambient light level is 0.15.

Menu Functions. The operations performed for each menu

selection will now be described.

(L)oad model. This menu choice allows the user to

load an existing polygon file from directory "./poly".

While the model is loading, periods will be printed to the

screen at the rate of one per 50 polygons loaded. This

confirms the loading process for the user.

(M)odify settings. This menu choice allows any of

the user-modifiable display settings to be changed. After

entering "m" [RETURN], a submenu will be displayed allowing

the user to select and modify any of the settings. The

values of all settings can be saved from this lower submenu.

67

C

(D)isplay. After all values have been

*appropriately set, this menu choice allows the model to be

viewed. After this selection is made, the screen will go

blank while the image is being written into the display

memory. The time needed to display a single image ranges

from one to about seven seconds as z-buffering and Gouraud

shading are both computationally expensive. Once the model

* image appears, the user may return to the main menu by

pressing "ESC".

(Q)uit. Self-explanatory.

Program Operation. Some of the more complex aspects of

the actions resulting from the above menu choices will now

be explained.

When first invoked, See loads all viewing settings from

file "./.defaults". It then displays the main menu. The

logical next step is to load a model.

The application prompts the user for a model name. It

them reads the response, appends a ".poly" extension to it,

and uses the result as the filename of the model to be

loaded from directory "./poly". All polygons are read into

an array in memory.

Once loaded, the program scans or "scopes" all polygons

to determine the domain of the input data. This information

is needed 1) to let the user know the extent of the model so

he can select a reasonable viewing position, and 2) to allow

the program to scale all input data for z-buffering.

68

6"

Since the z-buffer is only sixteen bits long, no world

coordinate value can be less than -32767 or greater than

32767 for z-buffering to work correctly from all possible

viewing positions. Therefore, the maximum data value must

be mapped into 32767 and all other values must be scaled by

32767.

See assumes that the largest displacement in the model

extends from the origin to the farthest corner of the box

defined by the planes X=0, X=Xrmax, Y=O, Y=Ymax, Z=O, and

Z=Zmax. If this displacement is less than 32767, the

scaling value is set to 1.0.

After scoping the model for minimum and maximum values,

the program again scans the model to determine how many

colors are present. The color table [4:132,134] is then

divided into this many blocks, with the maximum number of

steps per block equal to 256. Color ramps ranging from zero

intensity to maximum intensity are then entered into the

color table for each color present in the model. There is a

restriction: Although 256 distinct shades can exist for

each color in the model, See can only support seven

different colors (plus black) in the model. This is

strictly a limitation of the application.

Before the model can be viewed, the light source-

induced color intensity variations of each polygon vertex

must be calculated. The color intensity is calculated at

each vertex using the method outlined in the previousI
chapter. The color table index number corresponding to the

69

'10
fil

calculated intensity for that color is then assigned to the

vertex. This calculation is required whenever a new model

has been loaded, whenever the light source has been moved,

or when the ambient light value has been changed. Further,

it must be done regardless of the type of shading being

used.

Having done all the necessary preprocessing, the

application is now ready to display the model. If any

transparent polygons are present in the model, a pattern

mask will be used when each polygon is rendered. This will

give the appearance of transparency in the same way that a

screen door appears to be transparent.

After the user is done viewing the image on the screen,

the "ESC" key may be pressed to return to the main menu.

This is the only way, short of crashing the system, to

return control to the user.

Summary

The three major applications developed during this

thesis effort have been described. The first application

called "Model" was developed to generate object profiles

and, in turn, object surfaces from the profiles. It does

not require any graphics capability as it is text-based.

The second application, "Layout", allows the user to

create a tactical mission scenario model by instantiating

the objects created by "Model" at various locations on a

terrain grid. The generated model is output in a system-

70

independent form that can be transferred to other graphics

systems.

The last application, "See", was developed so that

models generated by "Layout" could be viewed to verify the

designer's intentions.

C.

71

VI. Conclusions and Recommendations

* Results

The overall purpose of this thesis effort was to

develop the capability to model and display tactical

situation scenarios similar to the artist conceptions

developed by McDonnell Douglas Corporation (Figure 1) for

the Air Force Flight Dynamic Lab in 1981. An example of the

*results is shown in Figure 15.

The implementation of this capability took the form of

a number of computer applications that can model mountains,

threat envelopes, and flightpath channels. By using these

programs, the user can interactively create a complex

tactical situation model in less than one hour.

0

Figure 15. Example Model Image

72

The data representation chosen for the model

facilitates transfer between differing computer systems.

This allows a tactical situation model to be created and

verified on a prototyping system before it is transferred to

a faster, simulator-type system.S

The user has been able to reduce his model construction

time from 1-4 weeks down to less than a day.

* Conclusions

The success of a modeling system is directly related to

how well the system presents the model abstraction to the

user. Levels of abstraction within the model help the user

to organize his activities in a more logical manner. The

modeling environment developed during this effort employs

• two levels of abstraction: a lower one for modeling objects

(mountains and threat envelopes); a higher one for modeling

the entire tactical region made up of terrain, hostile

*threat regions, and a projected flightpath.

The data representation chosen for a model is closely

related to abstraction levels used within the model.

Careful consideration must be given to the choice of data

representation as the performance of the modeling system in

terms of speed and ease of use is directly related.

Recommendations

Software Enhancements. As with any software project, a

number of improvements could be made to the applications
4

developed during this effort.

73

Program "Model" should be modified to include a

graphics interface so that profiles can be interactively

defined using the mouse input device. This would speed the

profile entry process and would provide immediate visual

feedback to the user as well.

The modeling tool, "Layout" should display the number

of polygons represented by the object icons on the terrain

grid. This would give the user an idea of the model

complexity or size as he builds.

Program "See" should be modified to support more than

seven colors in the model. The color table could be

optimized to accomodate this change by removing the color

table entries lower than the ambient level specified by the

user.

Another area needing improvement for this program

involves the time needed to render a Gouraud-shaded,

z-buffered image. It is currently much too long.

Further Research. A number of interesting areas of

research have arisen from this effort.

The interaction between terrain features and threat

envelopes was not modeled in any of the developed

applications. Terrain masking is one such interaction that

refers to a terrain feature effectively blocking the range

of a hostile threat on one or more sides. The result is

that the threat envelope is no longer symmetrical as it must

conform to the terrain around it. This would be desirable

74

e

effect to model as it is important to a pilot flying a

tactical mission.

One potential method to model this effect involves the

interaction of the two procedural models that build the

terrain feature and threat. Procedural geometric model

research has been done [11 in the area of communicating

procedures that may modify each other as they execute.

Another area that could be followed up is the use of

Defense Mapping Agency (DMA) data to model the terrain in

place of the mountain objects used in this effort. [4],

[16], and [8] all discuss some aspect of using DMA data for

terrain modeling

To conclude, the applications developed during this

thesis effort will be used by the Air Force researchers

involved with the MAGIC Cockpit. AFWAL's Super Cockpit

Project is another program that could benefit from further

work on these applications. Segments of the Air ForceC

System Command's Forecast II Initiative are also related to

the research done during this thesis effort.

75

Appendix A: Additional Software Tools

*This appendix outlines two additional software tools,

"translate" and "mix", that were developed during this

thesis effort. Additionally, two tools not developed as

part of this effort are also discussed. These latter two

tools were delivered to the user to aid in model viewing.

The purpose of each tool will be briefly described.

Tool #1: Translate

"Translate" is a tool that will translate all polygons

in a DR lB or DR 2B file (see Figure 4) by some X, Y, and/or

Z displacement specified by the user.

The program is invoked by typing "translate [RET]" at

the system prompt. The user will be prompted for the

filename (minus the ".poly" extension) of the object to be

translated. Then the user will be prompted for an output

filename, again without the extension.

Next, the user will be prompted for the X-Y-Z offset or

translation values in the form:

Xvalue Yvalue Zvalue [RET]

Translate simply adds the user-specified X-, Y-, and Z-

displacements to all X-Y-Z coordinate values in the input

file and then writes the new data to the output file. All

comment lines will be stripped and discarded from the input

file. The user is prompted for a new comment line for the

output file.

76

Tool #2: Mix

"Mix" is a tool that will combine two DR IB or DR 2B

files. This capability might be used to combine two threat

envelopes so that they are concentric about the z-axis.

The program is invoked by typing "mix [RET]" at the

system prompt. The user will be prompted for the filenames

(minus the ".poly" extension) of both objects that are to be

combined. Then the user will be prompted for an output

filename, again without the extension.

The program strips off all comment lines from both

input files. The user is prompted for a new comment line

for the output file.

Tool #3: Treemaker

*This tool takes a polygon file as input. It then

generates a binary space partitioning tree of polygons so

that the model can be rendered from back-to-front with a

*viewing program (Tool #4, below).

An example of this tool being used can be found in

Appendix B.

Tool #4: Bspview

This tools takes a binary space partition tree format

prepared by the previous tool as input. It allows the user

to dynamically change the viewpoint when viewing a model,

effectively provided simulated movement through the model.

Control is provided via the mouse input device and allows
I

adjustments in simulated pitch and yaw in addition to

77

4-

forward and backward movement. Simulated velocity can be

adjusted, as can the angular rate for the simulated pitch

and yaw. Additionally, absolute position of the viewpoint

in world coordinates can be viewed at any time.

An example of this tool being used can be found in

Appendix B.

0

78

kggi -i

Appendix B: Model Building Session Example

This appendix will outline a complete modeling session

using software tools developed during this thesis effort.

Most of the text is taken from an actual modeling session.

As such, system prompts ("[xxx]davinci ") are shown along

with some Unix commands. Further, there where some

* previously-created profiles and surfaces used in this

session.

All user responses will be underlined for clarity.

* "[RET]" signifies pressing the RETURN key.

All commands are executed from a directory that will be

defined as the home directory. This directory will be

* specified as "./" following the Unix file system convention.

The home directory is assumed to contain certain programs

and directories for this discussion:

[202]davinci ls [RET]
bspview* model* see*
database.out mountains.in threats.in
layout* poly/ treemaker*
1o/ prof/

Constructing Profiles and Surfaces

Before any tactical situation models can be

constructed, the objects to be placed in the model must

first be created. Program "Model" is used to create

profiles which are used to created both threat envelopes and

mountains.

79

Program Conventions. The first convention to recognize

is that the assumed unit of measure for this tool is feet.

This is important because the modeling tool, "layout",

converts to nautical miles (6000 ft/nautical mile).

Secondly, the order of specified profile points is

important as the tool assumes the "outside" of a profile

lies in the x-z plane to the right of the line segments

defining the profile when traversed from first to last (see

Figure 5). The reasons for this are discussed in the main

body of this document.

Operation. After invoking Model from the system

prompt, the screen clears and the main menu is displayed.

[203]davinci model [RET]

• **** TACTICAL SITUATION MODEL GENERATOR *

MAIN MENU--------------------

0> EXIT
1> Profile Directory

* 2> Load Profile
3> Store Profile
4> List Profile
5> Construct Profile
6> Revolve Profile
7> Extrude Profile
8> Surface Directory

Enter menu choice -- >

The user can view the names of all existing profiles

(if any) by selecting "l". This will effectively do a

directory listing of directory ./prof.

Enter menu choice -- > 1 [RET]

80

11

C

Existing profile files:

bigaaa.prof fltmt2.prof samred.prof
bigsam.prof mountp.prof samyellow.prof
flatmt.prof mountp2.prof

RETURN to Continue... [RET]

At this point, control is returned to the main menu,

which will not be shown below in the interest of space.

If none of the already-existing profiles are suitable

for creation of a new object, the user can choose to create

a new profile by entering "5" at the main menu prompt.

After a profile is defined, the user can optionally save the

profile into directory ./prof with an optional comment.

Even if the user does not elect to save the profile, it can

still be used to generate a surface, as it remains the

current profile until another is loaded or defined.

Enter menu choice -- > 5 [RET]

Will all points be the same color? (y/n) -- > y [RETI

Enter red green blue
components for all points -- > 1.0 0.0 0.0 [RET]

Max points = 100.

Point #1: Enter X and Z or RETURN to quit -- > 25 0 [RET]

Point #2: Enter X and Z or RETURN to quit -- > 15 10 [RET]

Point #3: Enter X and Z or RETURN to quit - 10 18 [RET

Point #4: Enter X and Z or RETURN to quit -- 10 22 [RET]

Point #5: Enter X and Z or RETURN to quit -- > CRET]

Confirm quit? (y/n) -- > [RET]

81

' p

Save profile to file? (y/n) -- > y CRET]

Enter profile name (without .extension) -- > example [RET]

-p Enter comment up to 65 chars.
Comment -- > This is an example of making a profile [RET]

A new file named "example.prof" now exists under directory

./prof. The extension ".poly" was automatically appended to

the filename input by the user.

Control will again be returned to the main menu.

Responding "4" to the main menu prompt will allow the user

to view the current profile, if desired.

- Enter menu choice -- > 4 [RET]

Pt# X Z red green blue
- 1 25.00 0.00 1.0000 0.000 .000

2 15.00 10.00 1.0000 0.0000 0.0000

3 10.00 18.00 1.0000 0.0000 0.0000
4 0.00 22.00 1.0000 0.0000 0.0000

RETURN to Continue... [RET]

Now the current profile can be used to generate a

surface of revolution by entering "6" at the main menu

prompt. Only the number of sectors must be specified. Then

the resulting surface will can be saved to directory ./poly

under a name specified by the user. The extension ".poly"

will automatically be appended to the filename input by the

user.

Fnter menu choice -- > 6 [RET]

4 points in profile: 3 polygons per sector.

82

.

Sectors per revolution? ----- > 5 [RET]

15 polygons will be generated.

Enter name to save under (without .extention) testsurf [RET

Enter comment up to 65 chars.
Comment -- > From example.prof [RET]

Processing... Complete

The input sequence for a surface of extrusion is identical.

To verify the existence of this new object, "8" is

entered at the main menu prompt. This will effectively do a

directory listing of directory ./poly.

Enter menu choice -- > 6 [RET]

Existing polygon files:

baaa-poly mnt4ns-poly mnt8r3.poly sam8.poly
bsam8.poly mnt5ns.poly mnt8r4.poly samred.poly
mntl~r4.poly mnt6r3.poly mount3.poly samyellow.poly
mnt3ns.poly mnt6r4.poly mounts.poly testsurf.poly

RETURN to Continue...[RET]

The user continues defining profiles and surfaces until

he has created all the objects he intends to place into the

tactical situation model. When done, the user selects "0"

from the main menu.

Enter menu choice -- > 0 [RET]

Program ended--normal termination.

The use of descriptive names for the created objects is

important as these are the names that will appear in the

83

modeling tool menus. If the user wishes, he may move down

into directory ./poly and add comment lines to any of these

object files. The only restrictions are that the comment

lines start with "//", that they are placed at the beginning

of the file only, and that they are no longer than 65S

characters per line. There is no limit to the number of

comment lines that may be added.

S

Model Generation

Now that a suitable collection of objects exists, the

user can proceed to construct a model by using the modeling

tool "layout".

The first step in the modeling process is to let theS

modeling tool know which objects (threats and mountains) the

user wants to be able to add to the model. This is done via

two files that list objects to be used for a modeling

session. The files need only be changed when the user

wishes to add or delete objects from the lists. Any text

editor can be used to modify the files.

The contents of each of files is simply a list of

filenames for objects that are contained in directory

./poly. File "threats.in" lists threat objects while file

"mountains.in" lists the mountain objects. Both exist in

the home directory.

84

p

[207]davinci cat threats.in [RET]
baaa.poly
samred.poly
samyellow.poly
bsam8 .poly

*. [208]davinci cat mountains.in [RET]
mnt6r3.poly
mnt6r4.poly

0 Qmount3.poly
mnt3ns.poly

Obviously, the names of these objects must have some

meaning to the user. Above, "mnt6r4" indicated that the

* particular mountain was 6000 feet high and had 4 siees. Pny

convention can be used, just so it's consistent. The object

"testsurf" that we created earlier could be added to either

of these files; most likely to the mountain file, since the

profile looks like that of a mountain. It would appear as

0 "testsurf.poly" in file "mountains.in". Order of the list

entries is not important, although they will appear in the

same order in the modeling tool menu entry.

Even though "testsurf" would appear as a 25-foot

mountain (i.e., a bump) in a model scaled to nautical miles,

let's assume we wish to use it as a mountain object. Its

name is added to the input list file which will then look

like:

[209]davinci cat mountains.in [RET]
mnt6r3.poly
mnt6r4.poly
mount3.poly
mnt3ns.poly
testsurf.poly

Vow the modeling tool must be made aware of the new
object the user has added to the list. This is done by
using the "setup" specification when invoking the mode]iar

85

I'A

7 41% 404 GEOMETI IC MODELING OF FLIGNT INFORMATION FOR GRAPHICAL 2-
COCKPIT DISPLAV(U) AIR FORCE INST OF TECH
RIGHT-PArTERsON AFS ON SCHOOL OF ENGINEERING

UNCLASSIFIED N A KANKO DEC 87 AFIT/GCE/ENG/87D-6 F/G 1/4

1111Mim 2IIII?.2.

IIIJIL25 1.

MICROCOPY RESOLUTION TEST CHART

0. 0 0 0 0 0 0

tool. This option need only be used when the user has added

or deleted objects from the list files.

[210]davinci layout setup [RET]

Setting up layout parameters...

Setup complete.

The modeling tool is now ready for a modeling session.

The user may proceed by specifying the size of the region to

be modeled as follows:

[211]davinci layout 100 150 [RET]

This specification means that the region extends 100 miles

to the east and 150 north of the origin.

Once this command is issued, the user utilizes the

graphical interface as described in the implementation

chapter of this document. Assuming the user wishes to

create a polygon file as a result of the modeling session,

he will select "Create Database" from the main menu. The

polygon file will be stored to file "database.out" in the

home directory (more on this file shortly). When the user

exits the modeling program, it will prompt him for a saveI

name for the symbolic form of the model.

Enter filename to save session
under [session.lo]--> lo/example.lo [RET]

This will save the symbolic model to directory ./lo. The

model can now be read into the modeling tool by specifying

GS it at invocation:

86

[U

[212]davinci layout lo/example.lo [RETJ

If no save name is specified, the symbolic model will

automatically be saved to file "session.lo" in the home

directory. "session.lo" can similarly be used as input to

the modeling tool.

Model Viewing

The model may be viewed in two ways. If the user

wishes to view a Gouraud shaded image, program "see" must beC
used. If he instead wishes to dynamically move through the

model, "bspview" must be used. These tools will be

discussed in this order.

Gouraud Shaded Viewing. Before "see" can be used to

view the model, the polygon file must be copied or moved to

directory ./poly.

2133]davinci cp database.out poly/testmodel.poly [RET]
r214]davinci see [RET]

The main menu for program "see" is shown in Figure 14. It

will not be shown below in the interest of space. Once the

main menu is displayed, the user can load a rodel to be

viewed by entering "1" after the menu prompt:

87

(S

(L)oad model, (M)odify settings, (D)isplay model, or (Q)uit?

Enter choice -- > I [RET]

Enter model name (without .extention)
or RETURN to quit -- > testmodel [RETI

Loading model Complete

Scoping model Complete

Next the user will most likely wish to modify some of

the position values. The view position is first changed,

followed by the center of interest.

(L)oad model, (M)odify settings, (D)isplay model, or (Q)uit?

Enter choice -- > m [RETI

* MODIFIABLE DEFAULT VARIABLES *

1) Viewpoint Position
2) Center of Interest Position
3) Light Source Position
4) Ambient Light Component
5) Type of Shading
6) Store DefaultsS

Enter item # or RETURN to quit -- > 1 [RETI

* MODIFY VIEWPOINT *

Current viewpoint position: X = 18000.0
Y = 0.0
Z = 5000.0

Enter new viewpoint (X Y Z)
or RETURN to continue ------- > 30 10 [RET]

88

CM

e

* MODIFIABLE DEFAULT VARIABLES *

1) Viewpoint Position
2) Center of Interest Position
3) Light Source Position
4) Ambient Light Component
5) Type of Shading
6) Store Defaults

* Enter item # or RETURN to quit -- > 2 [RET]

* MODIFY CENTER OF INTEREST *

* Current center of interest position: X = 17000.0
Y = 4000.0
Z = 3000.0

Enter new center of interest (X Y Z)
or RETURN to continue ---------- ------ > 0 0 5 [RET]

*** MODIFIABLE DEFAULT VARIABLES *

* 1) Viewpoint Position
2) Center of Interest Position
3) Light Source Position
4) Ambient Light Component
5) Type of Shading
6) Store Defaults

Enter item # or RETURN to quit -- > [RET]

All other settings can be modified likewise. Note that the

modifiable settings can be saved by selecting "6" from the

modification menu. These settings are saved to file

".defaults" in the home directory and will be in effect the

next time "see" is invoked.

Control has now been returned to the main menu and the

user is ready to view the model. After "d" is entered, a

message will be displayed to remind the user how to exit the

89

(

viewing mode when done. The user must press return to view

the model.

(L)oad model, (M)odify settings, (D)isplay model, or (Q)uit?

Enter choice -- > d [RET]

After viewing scene, press ESC to return to main menu

Press RETURN to view model ...[RET]

After the user is done viewing the model he may exit

the program by entering "q" at the main menu prompt.

(L)oad model, (M)odify settings, (D)isplay model, or (Q)uit?

Enter choice -- > q [RET]

Hope to 'see' you again soon!

[2153davinci

Dynamic Movement. To accomplish dynamic movement, the

polygon file must first be organized into a binary space

* partitioned tree. This is done with program "treemaker" as

follows:

[215]davinci treemaker [RET]
Name of polygon file: database.out [RET]
Enter number or polygons to check [57: [RET]
Enter seed [01: [RET]
Building tree...
Seed: 0 Test: 5 In: 466 Out: P86 Ratio: 1.90
Would you like an ASCII dump of the tree? n [RET]
Enter binary tree file name: testmodel.bsp [RET]
All done
[216]davinci

The above program output indcates that the input polygonG
file had 466 polygons and that the resulting binary space

90

partitioned tree contains 866 polygons. The increase occurs

because some polygons in the original file are split into

two or more polygons along bounding plane boundaries.

It would be helpful if a directory called "./bsp" were

used to store the resulting bsp files. The binary tree file

above would have then be saved as "bsp/testmodel.bsp". This

is not necessary, but it tends to keep the home directory

cleaner.

The model may now be viewed dynamically by invoking

program "bspview". Beginning position and center of

interest are specified by the user. Also, number of light

sources, their positions, and the amount of ambient light

present are specified, as well. Note that the light

locations are actually specified as direction vectors from

the origin to the light source, hence actual position is not

necessary. This is reasonable, since a point light source

(such as the sun) is usually considered to exist at anS
infinite distance, hence all light rays from the source are

parallel to each other.

Once all starting parameters are specified, the main

help screen is displayed. After pressing any key the user

will see the image of the model.

[2161davinci bspview [RET]
Enter binary tree file name: testmodel.bsp [RET]
Initial eye position (3fp): 0 0 (5 [RETI
Initial center of interest (3fp) : 10 10 0 [RET]
Number of lights: 2 [RET]

location of light 1: 1 (.1 [RET]
location of light 2: -1 0 .25 [RETI

Ambient light: .2 [RET]

91

Hold down the indicated mouse buttons for constant
motion:

--R turn right
-M- move forward
L-- turn left
MR turn down

LM- turn up
L-R move backwards

Strike the indicated keys for state changes:

ESC stop viewing model and return to this menu
h help
s increase speed
d decrease speed
w increase angular turn rate
e decrease angular turn rate
q quit the program

Press any key board character to continue

Eye position 0.0 0.0 0.0
center position 10.0 10.0 0.0

State changes only take effect when the image is actually

being viewed. Pressing the escape key will return the user

to the help screen and the viewer's position and center of

interest can be noted. This is particularly helpful if the

user wishes to view the same model from a specific position

with the "see" program.

When the user is finished viewing the model, he presses
I

"q" while viewing the image. This will return control to

the operating system after writing a framecount message to

IC. the screen. This framecount indicates how many times the

framebuffer was swapped to accomplish dynamic movement

through the model.

92

No&

-

Bibliography

1. Amburn, Phil, Eric Grant, and Turner Whitted.
"Managing Geometric Complexity with Enhanced Procedural
Models," SIGGPAPH '86 Proceedings, published as
Computer Graphics, 20: 189-195 (November 4, 1986).

2. Bratko, Ivan. PROLOG Programming for Artificial
Intelligence. Addison-Wesley, Wokingham, England,
1986.

3. Carlson, Wayne E. Techniques for the Generation of
Three Dimensional Data for Use in Complex Image
Synthesis. PhD dissertation. Ohio State University,
Columbus, Ohio, 1982.

4. Clark, Charles L. and Michael P. Pafford. "Geographic
Subdivision and Top Level Data Structures: Columbus,
Magellan, and Expanding CIG Horizons," (AD-P004 317),
The Image III Conference Proceedings Held at Phoenix,
Arizona on 30 May - 1 June 1984, (Proceedings Paper),
129-149, Cameron Station, Alexandria, Virginia:
Defense Technical Information Center, (AD-A148 636).

5. Costenbader, J. L. "CIG Data Bases in an Instance:
Bits and Pieces," (AD-P004 318), The Image III
Conference Proceedings Held at Phoenix, Arizona on 30
May - 1 June 1984, (Proceedings Paper), 151-163,
Cameron Station, Alexandria, Virginia: Defense
Technical Information Center, (AD-A148 636).

S 6. Foley, James D. and Andries Van Dam. Fundamentals of
Interactive Computer Graphics. Addison-Wesley,
Reading, Massachusetts, 1982.

7. Gouraud, H. Computer Display of Curved Surfaces. PhD
disseration. UTEC-CSc-71-113, NTIS AD-762 C18,

4' University of Utah Computer Science Dept., Salt Lake
City, Utah, June 1971.

8. Haas, Manfred, Diether Elflein, and Peter M.
Gueldenpfennig. "Data Base Generation System for
Computer Generated Images and Digital Radar Landmass
Simulation Systems," (AD-P00 182), Proceedings of the
4th Interservice/Industry Training Fquipment
Conference, 16-18 November, 1982, Volume I,
(Proceedings Paper), 231-235, Cameron Station,
Alexandria, Virginia: Defense Technical Information
Center, (AD-A122 155).

93

9. Hearn, Donald, and M. Pauline Baker. Computer
Graphics. Prentice-Hall, Englewood Cliffs, New Jersy,
1986.

10. Jauer, R. A., and T. J. Quinn. "Pictorial Formats,
Vol. 1: Format Development." Air Force Wright
Aeronautical Laboratories Technical Report
AFWAL-TR-81-3156. Wright-Patterson Air Force Base,
Ohio: February 1982.

11. Newell, Martin E. The Utilization of Procedure Models
in Digital Image Synthesis. PhD dissertation.
University of Utah, Salt Lake City, Utah, 1975.

12. Reising, John M. and Carol Jean Kopala. "Cockpit
* Applications of Computer Graphics." Report for Harvard

Computer Graphics Week, Harvard University, Graduate
School of Design, 1982.

13. Smart, Donald D., Richard D. Teichgraeber and Anthony
C. Chirieleison "The Generation of Three-Dimentional
Data Bases Using a Building Block Approach" (AD-P004
319), The Image III Conference Proceedings Held at
Phoenix, Arizona on 30 May - 1 June 1984, (Proceedings
Paper), 165-176, Cameron Station, Alexandria, Virginia:
Defense Technical Information Center, (AD-A148 636).

* 14. Townsend, Barbara, Manager for Modeling Tools.
Personal Interview, Evans & Sutherland Computer
Corporation, Salt Lake City, Utah, 20 Aug 1987.

15. Wailes, Capt Tom S. Placing Hidden Surface Removal
Within The Core Graphics Standard: An Example. MS

* Thesis, AFIT/GCS/ENC/83D-9. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson
AFB, Ohio, December 1983.

16. Way, T. C., M. E. Hornsby, J. D. Gilmour, R. F.
Edwards, and R. E. Hobbs. "Pictorial Format Pisplay

4Evaluation." Air Force Wright Aeronautical
Laboratories Technical Report AFWAL-TR-84-3036.
Wright-Patterson AFB, Ohio, May 1984.

17. Widder, Patricia A. and Clarence W. Stephens "Data
Base Generation: Improving the State-of-the-Art,"
(AD-P003 470), Proceedings of the Interservice/Industry
Training Equipment Conference (5th) Held at Washington,
D. C. on November 14-16, 1983. Volume 1, (Proceedings
Paper), 164-170, Cameron Station, Alexandria,
Virginia: Defense Technical Information Center,
(AD-A142 774).

94

4Al

1.Yan, Johnson K. "Advances in Computer-Generated
Imagery for Flight Simulation," IEEE Computer Graphics
& Applications, 9: 37-51 (August 1985).

C

95

Vita

0 Captain Mark A. Kanko was born on January 30, 1960 in

Minot, North Dakota. He graduated from Butte Public High

School in Butte, North Dakota in 1978 and entered North

Dakota State University in Fargo, North Dakota. He

graduated in 1982 with the Bachelor of Science in electrical

engineering specializing in computer engineering. Captain

Kanko served three and a half years at NASA's Johnson Space

Center in Houston, Texas before entering the School of

Engineering, Air Force Institute of Technology in June 1986.

He is married to Annette (Lindaas) Kanko of Mayville, North

Dakota and they have three children: Delayna, Alexander,

and Emma.

Next military address: ASD/ENASC

WPAFB, OH 45433

0 Comm 513-255-2262

Permanent address: Box 314

Butte, ND 58723

96

LP 1 Lh %1391

* ..- 'Liza"

UNCLASSIFIED
SECURITY CLASSIF CAT:ON OF 5S AGE

Form Approved

REPORT DOCUMENTATION PAGE FMB o. 070-0188

la. REPORT SECURITY CLASSIFiCATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
S 2a. SECURITY CLASSIFICAT;ON AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
* 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORCANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCE/ENG/87D-6

10 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

" School of Enaineering AFIT/ENG

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Insitute of Technology (AU)
0 Wright-Patterson AFB, Ohio 45433-6583

* Ba. NAME OF FUNDING, SPONSORING 8b OFFiCE SYMBOL 9 PRCCUREMENT NSTRUMENT DENTIFtCATON NIMBER

ORGANIZATION (If applicable)
Flight Dynamics Lab AFWAL/FIGR

8c. ADDRESS (City, State, and ZIP Code) '0 SOURCE OF PUNDiNG NLMBERS

Flight Dynamics Laboratory/'FIGR ROGRAM 0ROjECT TASK WORK UNIT

Air Force Wright Aeronautical Labs ELEMENT NO NO NO ACCESSON NO.

Wright-Patterson AFB, Ohio 45433
11 Ti'LE (Include Security Classification)

See Block 19
12. PERSONAL AUTHOR(S)

Mark A. Kankc, B.S., Capt, USAF
13a. TYPE OF REPORT 13b T1ME COVERED [4 DATE OF REPORT (Year, Month. Day) 5is PAGE COUNT

MS Thesis PROM TO 1987 December I18
16 SUPPLEMENTARY NOTA

T
ON

17. COSATI CODES '8 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROuP Graphics, Computer Graphics, Graphical Displays,
01 04 Cockpit Displays, Geometric Model, Tactical
12 05 Situation Model, Threat Envelope,

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: GEOMETRIC MODELING OF FLIGHT INFORMATION
FOR GRAPHICAL COCKPIT DISPLAY

Thesis Chairman: Elton P. Amburn, Major, USAF
instructor of Computer Systems

/ " . ,* ; < z

20 DISTRIBUTON. AVA.LA8ILITY Or ABS-RAC 2 ABSTRACT S TC"RIT CATION

0] UNCLASSIFED,'UPNLMlTED E SAME AS OPT 0 DTIC IJSE-7S U NCL SS ILD
22a NAME OF RESPONSBLE NDIVIDUAL 22 'ELEPONE(Include Area Code) 22c OFCE SYMABCL

Elton P. Amburn, Major, USAF (513) 255-3576 AFITi"ENG

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICAT!ON OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

(Continued from front, Block 18)

Three-dimensional Model, Terrain Model, Modeling
Environment, Procedural Model, Surface of Revolution

(Continued from front, Block 19)

The purpose of this investigation was to design and
implement a graphics-based environment capable of modeling
tactical situation arenas as viewed from the cockpit. The
modeled arena or region was composed of mountains, hostile
threat envelopes, and a projected flightpath through the
region. The,,resulting displays were to be used in the
Microprocessor-Based Application of Graphics Interactive
Communication (MAGIC) Cockpit owned by the Crew Systems
Development Branch within the-U.S. Air Force Flight Dynamics
Lab at Wright-Patterson Air Force Base. This cockpit is
used to prototype new graphical display formats that might
be used in future aircraft.

The individual 4hree-dimensionalpobjects used to
represent threats and mountains in the model were generated
by geometric procedural models. A strongly-parameterized
procedural model would generate a three-dimensional surface
of revolution composed of polygons from a two-dimensional
profile input by the user. Once defined, each object could
then be instantiated into the model representing the
complete tactical situation. Positioning of objects in the
model was accomplished via a mouse input device.

The implemented data representation allowed the model
to be easily modifiable. Additionally, ':he model couldbe
stored in a machine-independent form to assure portability.

An overall goal of this investigation'was to allow the
cockpit display researcher to create an entirely new
tactical situation display model in less than one hour.

The applications comprising the modeling environment
were written in the C programming language and were hosted
on a Silicon Graphics IRIS 3130 graphics workstation.

* UNCLASSIFIED

Ai

,LrcoE

0./

